Здавалка
Главная | Обратная связь

Теорема: ТЕОРЕМА АБЕЛЯ.



1) Если степенной ряд сходится в точке , то он абсолютно сходится при всяком х, для которого справедливо неравенство .

2) Если же степенной ряд расходится при , то он расходится при всяком х, для которого .

Доказательство.

1) По условию степенной ряд сходится в точке , т. е. сходится числовой ряд

(1)

и по необходимому признаку сходимости («А что это за признак, помните?») его общий член стремится к 0, т.е. . Следовательно, существует такое число , что все члены ряда ограничены этим числом: .

Рассмотрим теперь любое х, для которого , и составим ряд из абсолютных величин: (А зачем? Читайте дальше.) .
Запишем этот ряд в другом виде: так как , то (2).

Из неравенства получаем , т.е. ряд

(3)

состоит из членов, которые больше соответствующих членов ряда (2). Ряд представляет собой сходящийся ряд геометрической прогрессии со знаменателем , причём , так как . СЛЕДОВАТЕЛЬНО (устроюсь работать следователем), ряд (2) сходится при . Таким образом, степенной ряд абсолютно сходится.

2) Пусть ряд расходится при , иными словами, расходится числовой ряд . Докажем, что для любого х ( ) ряд расходится. Доказательство ведётся от противного. Пусть при некотором фиксированном ( ) ряд сходится, тогда он сходится при всех (это следует из первой части данной теоремы), в частности, при , что противоречит условию 2) теоремы 1.

Теорема доказана.(Да-да. Вот так быстро. Советую перечитать пару раз этот пункт)

Следствие.

Теорема Абеля позволяет судить о расположении точки сходимости степенного ряда. Если точка является точкой сходимости степенного ряда, то интервал заполнен точками сходимости; если точкой расходимости является точка , то
бесконечные интервалы заполнены точками расходимости (рис. 1).

Рис. 1. Интервалы сходимости и расходимости ряда

Можно показать, что существует такое число , что при всех степенной ряд абсолютно сходится, а при − расходится. Будем считать, что если ряд сходится только в одной точке 0, то , а если ряд сходится при всех , то .

Определение4. Интервалом сходимости степенного ряда называется такой интервал , что при всех этот ряд сходится и притом абсолютно, а для всех х, лежащих вне этого интервала, ряд расходится. Число R называется радиусом сходимости степенного ряда.

Замечание. На концах интервала вопрос о сходимости или расходимости степенного ряда решается отдельно для каждого конкретного ряда.

 

 

А теперь научимся определять интервал и радиус сходимости степенного ряда.

Рассмотрим степенной ряд и обозначим . Составим ряд из абсолютных величин его членов:

и применим к нему признак Даламбера. Пусть существует , где . По признаку Даламбера ряд сходится, если , и расходится, если . Отсюда ряд сходится при , тогда интервал сходимости: . При ряд расходится, так как . Используя обозначение , получим формулу для определения радиуса сходимости степенного ряда:

,

где − коэффициенты степенного ряда.

Если окажется, что предел , то полагаем .

Для определения интервала и радиуса сходимости степенного ряда также можно использовать радикальный признак Коши, радиус сходимости ряда определяется из соотношения .

Определение 5. Обобщенным степенным рядом называется ряд вида . Его также называют рядом по степеням .
Для такого ряда интервал сходимости имеет вид: , где − радиус сходимости.

Покажем, как находится радиус сходимости для обобщенного степенного ряда.

,

т.е. , где .

Если , то , и область сходимости R; если , то и область сходимости .

Пример 2. Найти область сходимости ряда .

Решение. Обозначим . Составим предел

.

Решаем неравенство: , , следовательно, интервал

сходимости имеет вид: , причём R = 5. Дополнительно исследуем концы интервала сходимости:
а) , , получаем ряд , который расходится;
б) , , получаем ряд , который сходится
условно. Таким образом, область сходимости: , .

Ответ: область сходимости .

Пример 3. Ряд расходится для всех , так как при , радиус сходимости .

Пример 4. Ряд сходится при всех R, радиус сходимости .







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.