Здавалка
Главная | Обратная связь

Числовые характеристики непрерывных случайных величин



Пусть непрерывная случайная величина Х задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b].Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интегралЕсли возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле: При этом, конечно, предполагается, что несобственный интеграл сходится. Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения. По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула: Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии. Определение. Модой М0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум. Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным. Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным. Определение. Медианой MD случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины. Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам. Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием. Определение. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Хk.Для дискретной случайной величины: .Для непрерывной случайной величины: .Начальный момент первого порядка равен математическому ожиданию. Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величиныДля дискретной случайной величины: .Для непрерывной случайной величины: . Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения. Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии. Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

 

 

Вопрос

Нормальным называют распределение вероятностей непрерывной случайной величины, которое задается плотностью
.
Нормальное распределение задается двумя параметрами: – математическим ожиданием, – средним квадратическим отклонением.

Нормальное распределение, также называемое распределением Гаусса, —распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений, в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть, является, с математической точки зрения, не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Вопрос







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.