Здавалка
Главная | Обратная связь

Достаточные признаки разложимости в ряд Фурье



Ряды Фурье.

Тригонометрический ряд.

Определение. Тригонометрическим рядомназывается ряд вида:

или, короче,

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

 

Определим коэффициенты этого ряда.

 

Для решения этой задачи воспользуемся следующими равенствами:

Т.к. функция f(x) непрерывна на отрезке [-p; p], то существует интеграл

Такой результат получается в результате того, что .

Получаем:

 

Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от -p до p.

Отсюда получаем:

Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от -p до p.

Получаем:

 

Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.

Таким образом, если функция f(x) – любая периодическая функция периода 2p, непрерывная на отрезке [-p; p] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

существуют и называются коэффициентами Фурьедля функции f(x).

 

Определение. Рядом Фурьедля функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Достаточные признаки разложимости в ряд Фурье

 

Теорема (Теорема Дирихле). Если функция f(x) имеет период 2p и на отрезке [-p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок [-p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

 

Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-p;p].

 

Теорема. Если функция f(x) имеет период 2p, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [-p;p] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

 

Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкойна отрезке [-p;p].

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.