Здавалка
Главная | Обратная связь

Порядок расчёта стабилизатора напряжения (источника опорного напряжения)




Расчет простейшего стабилизатора напряжения мы проведём с рассмотрением конкретного примера.

Исходные, предъявляемые к схеме параметры:

1. Входное напряжение делителя - Uвх (может быть стабилизированным, а может и нет). Допустим, что Uвх = 25 вольт;
2. Выходное напряжение стабилизации - Uвых (опорное напряжение). Допустим, что нам необходимо получить Uвыx = 9 вольт.

Решение:

1. Исходя из необходимого напряжения стабилизации, по справочнику подбирают необходимый стабилитрон. В нашем случае это Д814В.
2. Из таблицы находят средний ток стабилизации - Iст . По таблице он равен 5 мА.
3. Вычисляют напряжение, падающее на резисторе - UR1, как разность входного и выходного стабилизированного напряжения.

UR1 = Uвx - Uвыx ---> UR1 = 25 – 9 = 16 вольт

4. По закону Ома делят это напряжение на ток стабилизации, протекающий через резистор, и получают значение сопротивления резистора.

R1 = UR1 / Iст ---> R1 = 16 / 0,005 = 1200 Ом = 3,2 кОм

Если полученного значения нет в резистивном ряде, выберите ближайший по номиналу резистор. В нашем случае это резистор номиналом 3,3 кОм.
5. Вычисляют минимальную мощность резистора, помножив падение напряжения на нём на протекающий ток (ток стабилизации).

РR1 = UR1 * Iст ---> РR1 = 16 * 0,005 = 0,08 Вт

Учитывая, что через резистор кроме тока стабилитрона протекает ещё и выходной ток, поэтому выбирают резистор, мощностью не менее, чем в два раза больше вычисленной. В нашем случае это резистор мощностью не меньшей 0,16 Вт. По ближайшему номинальному ряду (в большую сторону) это соответствует мощности 0,25 Вт.

Вот и весь расчёт.


Как было написано ранее, простейшую цепочку стабилизатора постоянного напряжения можно использовать для питания схем, в которых используют малые токи, а для питания более мощных схем они не годятся.
Одним из вариантов повышения нагрузочной способности стабилизатора постоянного напряжения является использование эмиттерного повторителя. На схеме изображён каскад стабилизации на биполярном транзисторе. Транзистор «повторяет» приложенное к базе напряжение.
Нагрузочная способность такого стабилизатора возрастает на порядок. Недостатком такого стабилизатора, как и простейшей цепочки состоящей из резистора и стабилитрона, является невозможность регулировки выходного напряжения.
Выходное напряжение такого каскада будет меньше напряжения стабилизации стабилитрона на значение падения напряжения на p-n переходе «база – эмиттер» транзистора. В статье Биполярный транзистор, я писал, что для кремниевого транзистора оно равно – 0,6 … 0,7 вольта, для германиевого транзистора – 0,2 … 0,3 вольта. Обычно грубо считают – 0,65 вольта и 0,25 вольта.
Поэтому, например при использовании кремниевого транзистора, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет на 0,65 вольта меньше, т.е – 8,35 вольта.
Если вместо одного транзистора использовать составную схему включения транзисторов, то нагрузочная способность стабилизатора возрастёт ещё на порядок. Здесь также, как и в предыдущей схеме следует учитывать уменьшение выходного напряжения за счёт его падения на p-n переходах «база – эмиттер» транзисторов. В данном случае, при использовании двух кремниевых транзисторов, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет уже на 1,3 вольта меньше (по 0,65 вольт на каждый транзистор), т.е – 7,7 вольта. Поэтому, при проектировании подобных схем необходимо учитывать такую особенность и подбирать стабилитрон с учётом потерь на переходах транзисторов.
Резистор R2 необходим для «гашения» реактивной (емкостной и индуктивной) составляющей транзистора VT2, оказывающей паразитное влияние на работу транзистора, и обеспечивает надёжное его реагирование на входное воздействие. Чем меньше сопротивление резистора, тем меньше паразитное влияние, но слишком малое сопротивление может привести к тому, что транзистор VT2 окажется закрытым и в качестве регулирующего элемента окажется только транзистор VT1. Практически, на схемах стабилизаторов, значение резистора R2 рассчитывают редко. Бывает, радиолюбители даже ставят такие номиналы, которые противоречат нормальной работе схем, а сами радиолюбители даже об этом не подозревают. Поэтому его значение подбирают исходя из максимального расчётного нагрузочного тока. Через этот резистор должен протекать ток, приблизительно в 50 раз меньше максимального нагрузочного тока стабилизатора. Цифра 50 - это усреднённое значение коэффициента передачи силовых транзисторов, работающих в режиме больших токов. Сопротивление резистора определяется по закону Ома. Значение падения напряжения на переходе «база – эмиттер», (для кремниевого транзистора – 0,65 вольт) делится на максимальный ток нагрузки стабилизатора (например 2,5 ампер). Полученное значение умножается на 50. Если Вы используете составные транзисторы, то это значение может быть больше на 1 - 2 порядка (не 50, а 500...5000).

R2 = UR2 / Iст.max * 50 ---> R2 = 0,65 / 2,5 * 50 = 13 Ом

Рассчитанное таким образом сопротивление позволяет более эффективно гасить реактивную составляющую выходного транзистора и полноценно использовать мощностные способности обоих транзисторов. Не забывайте производить расчёт требуемой мощности резисторов, иначе всё сгорит в неподходящий момент. Выход из строя резистора R2 может привести к выходу из строя транзисторов и того, что Вы подключите в качестве нагрузки. Расчёт мощности стандартный, описанный на страничке Резистор.

В следующей статье мы рассмотрим компенсационный стабилизатор напряжения непрерывного действия. В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем «эмиттерный повторитель», кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.