Здавалка
Главная | Обратная связь

Состав, назначение, общие сведения



Радионавигационные системы определяют местоположение ЛА, используя для этой цели радиотехнические средства. Эти системы могут быть автономными, работающими на радиолокационном принципе, и неавтономными, использующими сигналы от радиомаяков.

К неавтономным радионавигационным системам относятся:

- автоматический радиокомпас;

- система радионавигации VOR;

- дальномер DME;

- система посадки ILS;

- микроволновая система посадки MLS;

- радиотехническая система ближней навигации;

- спутниковая навигационная система;

- радиолокационный ответчик УВД;

- система предупреждения столкновений.

Радиомаяки, используемые неавтономными системами, могут быть наземными или могут находиться на борту летательных, космических аппаратов.

Наземные радиомаяки служат для вождения ЛА по маршруту полета и для привода на аэродром. Их устанавливают на поверхности земли в поворотных пунктах маршрутов и в зоне аэродрома. Сигнал, излучаемый или ретранслируемый радиомаяком, пеленгуется бортовым приемником. Измеряя параметры сигнала, приемник определяет направление на маяк, дальность до него или величину отклонения от заданного направления. Радиомаяки обычно используются для обеспечения полета ЛА на маяк или от маяка. Однако по двум разнесенным маякам можно определить и текущее местоположение самолета.

Расположенные в разных точках радиомаяки работают на разных частотах, что позволяет настраивать радионавигационную систему на конкретный маяк. Кроме того, радиомаяки, как правило, передают азбукой Морзе сигналы опознавания. Выпускаются специальные радионавигационные карты, на которых все радиомаяки привязаны к координатам земной поверхности и для каждого из них указаны его частота и позывные. Прокладывая маршрут, штурман (или пилот) так строит траекторию полета, чтобы она, если возможно, проходила над радиомаяками. Получающаяся в результате линия заданного пути представляет собой ломаную линию, в точках перегиба которой находятся радиомаяки. Полет разбивается на отрезки и задача пилотирования сводится к выдерживанию направления на очередной радиомаяк. Для этого в начале каждого отрезка экипаж настраивает радионавигационную систему на выбранный радиомаяк с помощью пульта управления. Пульты управления у каждой из радионавигационных систем могут быть свои собственные, однако на современных ЛА чаще используется единый многофункциональный пульт управления (МФПУ), с помощью которого можно настроить все радионавигационные и радиосвязные средства на борту ЛА. При этом перед каждым пилотом установлен комплексный пульт радиотехнических средств, на нем расположены кнопки выбора настраиваемых радиосредств, ручки для настройки и цифровые индикаторы. Введенная частота настройки передается из МФПУ соответствующей радионавигационной системе. В режиме автоматического управления настройку на очередной радиомаяк осуществляет автоматика: вычислительная система самолетовождения инициирует передачу соответствующей частоты настройки нужной системе.

Выходные сигналы радионавигационных систем – измеренные ими углы, расстояния или отклонения – выдаются всем потребителям, главные из которых – системы отображения информации и системы автоматического пилотирования. Информация выдается последовательным кодом по КЛС.

Неавтономные радионавигационные системы различаются между собой по типу используемых ими радиомаяков. На магистральных пассажирских самолетах, как правило, устанавливают все типы систем, на других классах ЛА некоторые из них могут отсутствовать.

Автоматический радиокомпас (АРК) служит для навигации по приводным и широковещательным радиостанциям. Это самый простой вид радиомаяка. Радиостанция непрерывно излучает незатухающие или тонально-модулированные колебания и свои позывные. Частотный диапазон работы радиостанций 190-1750 кГц разбит на каналы с интервалом в 50 кГц. Радиокомпас определяет направление на приводную радиостанцию – ее курсовой угол. Погрешность не превышает 3-5°. Дальность действия зависит от высоты полета и мощности радиостанции, при мощности 500 Вт дальность составляет 200-300 км.

Система радионавигации VOR (сокращение от английского «Very high frequency Omnidirectional Range beacon» – всенаправленный СВЧ-маяк) определяет азимут ЛА относительно точки расположения этого радиомаяка. Радиомаяки VOR работают в диапазоне частот 108-117,975 МГц. В этом диапазоне выделено 200 каналов (через 50 кГц), 160 из которых отведены VOR, а 40 каналов в диапазоне частот 108-112 МГц (с нечетными десятыми долями МГц) отведены курсовым радиомаякам посадочной системы ILS.

Дальномер DME (от английского «Distance Measure Equipment» – аппаратура измерения дальности) служит для точного определения наклонной дальности до радиомаяка. Это оборудование устанавливают обычно в дополнение к радиомаякам VOR там, где напряженное воздушное движение требует более высокой точности навигации, чем та, которая обеспечивается с помощью маяков VOR.

С ЛА посылается импульсная посылка-запрос. В наземном оборудовании эта посылка принимается и посылается ответная кодовая посылка, но ответ задерживается на постоянную величину. Измеряя интервал между посылками бортовой дальномер определяет дальность. Дальность действия зависит от мощности ответчика. Типичная дальность на трассах - 365 км, в районах аэропортов – 95 км.

Есть несколько разновидностей наземных радиомаяков, с которыми способен работать бортовой дальномер – DME/N, DME/W, TACAN, VOR/DME, VORTAC.

Диапазон частот аппаратуры DME: 1025-1150 МГц для запросов (разбит на 126 каналов), 962-1213 МГц для ответных посылок (252 канала). Частотный интервал между каналами запроса и ответа постоянен и равен 63 МГц. Частотные каналы настройки DME настраиваются одновременно с частотой аппаратуры VOR.

Система посадки ILS (от английского Instrument Landing System – «система посадки по приборам») работает по радиомаякам метрового диапазона типа ILS или СП и определяет по ним отклонение ЛА от курса и глиссады планирования при заходе на посадку. На аэродроме устанавливается два радиомаяка – курсовой и глиссадный.


Курсовой радиомаяк задает плоскость посадочного курса равносигнальным методом путем формирования в горизонтальной плоскости двух пересекающихся диаграмм направленности. Он располагается так, чтобы задаваемая им плоскость проходила по оси взлетно-посадочной полосы. Частота работы курсового радиомаяка выбирается из диапазона 108,10-111,95 МГц. Излучение справа от курса посадки модулируется по амплитуде частотой 150 Гц, слева – частотой 90 Гц. Бортовой приемник измеряет разницу глубин модуляции (РГМ) принимаемых излучений. В плоскости курса взлетно-посадочной полосы РГМ равна нулю. РГМ увеличивается пропорционально отклонению от курса посадки. Информация о величине отклонения поступает в систему индикации, по изображению на экране пилот может судить, насколько точно он заходит на посадку и в какую сторону от идеального направления он отклонился – вправо или влево. Зона действия курсового радиомаяка – 46 км.

Глиссадный радиомаяк задает глиссаду планирования, которая позволяет пилоту выдерживать нужный угол снижения. Глиссада также задается равносигнальным методом, для чего диаграмма направленности глиссадного радиомаяка имеет два пересекающихся лепестка, нижний лепесток модулируется частотой 150 Гц, верхний – 90 Гц. Когда ЛА спускается точно по задаваемой глиссаде, измеряемая бортовым приемником разность глубин модуляции равна нулю, при отклонении от идеального направления РГМ увеличивается пропорционально этому отклонению, а по знаку РГМ можно судить о том, в какую сторону отклонился ЛА от глиссады – вверх или вниз. Дальность действия глиссадного радиомаяка – 18 км. Частота работы глиссадного радиомаяка 328,6-335,4 МГц и выбирается в зависимости от частоты установленного на аэродроме курсового радиомаяка.

Система посадки ILS также обеспечивает прослушивание членами экипажа позывных сигналов наземных радиомаяков.

Недостатком работы в метровом диапазоне волн является сильное влияние отраженных сигналов и как следствие – искажения при наведении ЛА. Поэтому некоторое время назад появились микроволновые системы посадки, работающие в сантиметровом диапазоне волн. По сравнению с системами посадки ILS/СП они имеют следующие преимущества:

1) меньше зависят от рельефа и препятствий,

2) угловые размеры зоны действия у них шире,

3) точность определения положения выше.

Микроволновая система посадки MLS (Microwave Landing System) выполняет ту же функцию, что и система посадки ILS: принимает сигналы двух расположенных на аэродроме радиомаяков MLS, один из которых задает траекторию приближения к ВПП по углу места, а второй – по азимуту.

В последнее время появились многофункциональные приемники, способные принимать сигналы нескольких типов радиомаяков, например, ILS, MLS и VOR.

Радиотехническая система ближней навигации (РСБН) является аналогом систем VOR, DME. Она использовалась в СССР для навигационного обеспечения полетов по воздушным трассам, для привода ЛА в зону действия посадочных систем. Сейчас система продолжает эксплуатироваться в России наряду с международной системой VOR/DME. Радиомаяки РСБН позволяют получить информацию о полярных координатах ЛА относительно этого маяка -азимуте и наклонной дальности. По сравнению с VOR/DME система дополнительно позволяет определять азимут и дальность на земле и может использоваться для опознавания ЛА по запросу диспетчера.

Принцип действия канала измерения дальности – такой же, как у DME: с ЛА посылается запрос, от наземного оборудования поступает ответ, по величине задержки ответа относительно запроса определяется дальность. В канале измерения азимута радиомаяком излучается сигнал от вращающейся направленной антенны, а когда она проходит через направление на север, излучается дополнительный сигнал от ненаправленной антенны. Для опознавания диспетчер производит запрос по радиоканалу, в ответ на который пилот нажимает кнопку «Опознавание» и бортовая часть РСБН посылает сигнал опознавания, который диспетчер видит на экране своего индикатора в виде отметки. РСБН работает в дециметровом диапазоне: в канале азимута 873,6-1000,5 МГц, в канале запроса - 770-812,8 МГц, в канале ответа – 930,6-1000,5 МГц. Используемый диапазон волн позволяет осуществлять измерения только в пределах видимости, поэтому дальность действия системы зависит от высоты полета ЛА и составляет 50 км на высоте 250 м и 380 км на высоте 12000 м.

Кроме азимута и дальности РСБН обеспечивает прием сигналов отклонения от оси равносигнальных зон курсового и глиссадного радиомаяков, а также позывных сигналов наземных радиомаяков.

Спутниковая навигационная система (СНС) обеспечивает пилота и другие системы навигационными данными, полученными путем измерения сигналов от навигационных искусственных спутников Земли. СНС определяет три координаты ЛА (широту, долготу и высоту) и три составляющие вектора скорости. Для этого СНС настраивается на орбитальную группировку спутников. Благодаря использованию бортовых атомных стандартов частоты обеспечивается взаимная синхронизация навигационных радиосигналов, излучаемых орбитальной группировкой.

Навигационные измерения основываются на определении дальности до спутников, координаты текущего положения которых точно известны. Определение дальности производится по измерению задержки принимаемого кода относительно аналогичного кода, формируемого в бортовой аппаратуре. Определение скорости осуществляется по измерению доплеровского смещения частоты принимаемого сигнала относительно частоты опорного генератора.

Радиолокационный ответчик УВД предназначен для работы с наземными аэродромными и трассовыми вторичными радиолокаторами служб управления воздушным движением. В зоне действия такого радиолокатора ответчик обеспечивает автоматическую выдачу координатной отметки местоположения ЛА и информацию о высоте полета и номере (идентификаторе) ЛА. Для отечественных систем УВД ответчик передает также информацию об остатке топлива. Современные ответчики предусматривают также возможность приема информации от служб УВД для передачи ее пилотам. Частота работы в передающем режиме 1090±0,06 МГц, в приемном – 1030 МГц.

Система предупреждения столкновений (СПС) определяет положение других ЛА относительно данного. Цель такой системы - избежать столкновений. Это возможно только в отношении тех ЛА, которые имеют на борту такую же систему.

Система СПС не имеет собственного передатчика и пульта управления, а использует оборудование ответчика УВД. Пеленгуя излучаемые ответчиком УВД сигналы, СПС отслеживает траектории других самолетов и оценивает исходящую от них потенциальную угрозу. Если выявляется возможность конфликта, система оповещает об этом пилота, сразу же показывая, какой маневр необходим, чтобы избежать столкновения. Так как приближающийся ЛА может предпринять маневр в ту же сторону, системы СПС двух сблизившихся ЛА координируют взаимно свои намерения.

Кроме перечисленных систем раньше широко применялись еще и радиотехнические системы дальней навигации, которые определяли географические координаты ЛА по сигналам наземных фазовых радионавигационных систем типа РСДН-20, «Omega», или импульсно-фазовых радионавигационных систем типа РСДН-3, РСДН-10, «Loran-C». Эти станции работают в диапазоне длинных волн и обеспечивают возможность определения местоположения ЛА на большом удалении от радиомаяков – в сотни и тысячи километров, т.е. по всему земному шару. Спутниковые навигационные системы постепенно вытесняют РСДН, на новых самолетах приемники РСДН уже не устанавливают, наземные станции постепенно демонтируют.

К автономным радионавигационным системам относятся:

- радиовысотомер;

- доплеровский измеритель скорости и угла сноса;

- метеонавигационный радиолокатор.

Эти устройства не используют радиомаяки, а получают информацию из собственного радиосигнала, отраженного земной поверхностью или метеообразованиями.

Радиовысотомер (РВ) измеряет действительную (геометрическую) высоту полета. Существуют две разновидности РВ – для малых высот и для

больших.

Доплеровский измеритель скорости и угла сноса (ДИСС) измеряет параметры вектора скорости ЛА: путевую скорость, то есть скорость относительно земли, и угол сноса – угол между направлением продольной оси ЛА и действительным направлением его движения. Снос ЛА вызван действием ветра.

ДИСС применяет наклонное облучение земной поверхности и определяет параметры вектора скорости по спектру частот сигнала, отраженного землей. Вследствие эффекта Доплера возникает сдвиг частот излученного и отраженного сигналов.

Метеонавигационная радиолокационная станция (МНРЛС) позволяет обнаружить зоны грозовой деятельности и обойти их. При наличии облачных структур на расстоянии до 200 км по курсу полета МНРЛС сигнализирует об этом пилотам. Для решения навигационных задач предусмотрен режим обзора рельефа поверхности земли. Современная усовершенствованная МНРЛС способна также обнаруживать сдвиг ветра, который представляет реальную опасность для ЛА и может привести к катастрофе.

При высоте полета 12000 м МНРЛС позволяет обнаружить грозовые образования и города на расстоянии до 550 км.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.