Здавалка
Главная | Обратная связь

Переполнение буфера



Эксплоиты, шелл-коды, переполнение буфера

 

Эксплойт. 1

Шелл-код. 2

Переполнение буфера. 4

Атаки на сеть через переполнение буфера – технологии и способы борьбы.. 11

 

Эксплойт

Эксплойт, эксплоит (англ. exploit, эксплуатировать) — это компьютерная программа, фрагмент программного кода или последовательность команд, использующие уязвимости в программном обеспечении и применяемые для проведения атаки на вычислительную систему. Целью атаки может быть как захват контроля над системой (повышение привилегий), так и нарушение её функционирования (DoS-атака).

Классификация

В зависимости от метода получения доступа к уязвимому программному обеспечению, эксплойты подразделяются на удалённые (англ. remote) и локальные (англ. local).

• Удалённый эксплойт работает через сеть и использует уязвимость в защите без какого-либо предварительного доступа к уязвимой системе;

• Локальный эксплойт запускается непосредственно в уязвимой системе, требуя предварительного доступа к ней. Обычно используется для получения взломщиком прав суперпользователя.

Атака эксплойта может быть нацелена на различные компоненты вычислительной системы — серверные приложения, клиентские приложения или модули операционной системы. Для использования серверной уязвимости эксплойту достаточно сформировать и послать серверу запрос, содержащий вредоносный код. Использовать уязвимость клиента немного сложнее — требуется убедить пользователя в необходимости подключения к поддельному серверу (перехода по ссылке в случае если уязвимый клиент является браузером).

Виды эксплойтов

Эксплойты, фактически, предназначены для выполнения сторонних действий на уязвимой системе и могут быть разделены между собой следующим образом:

1. Эксплойты для операционных систем

2. Эксплойты для прикладного ПО (музыкальные проигрыватели, офисные пакеты и т. д.)

3. Эксплойты для браузеров (Internet Explorer, Mozilla Firefox, Opera и другие)

4. Эксплойты для интернет-продуктов (IPB, WordPress, VBulletin, phpBB)

5. Эксплойты для интернет-сайтов (facebook.com, hi5.com, livejournal.com)

6. Другие эксплойты

Как выглядит эксплойт?

Эксплойт может распространяться в виде исходных текстов, исполняемых модулей, или словесного описания использования уязвимости. Он может быть написан на любом компилируемом или интерпретируемом языке программирования (наиболее частые: C/C++, Perl, PHP, HTML+JavaScript)[1].

Эксплойты могут быть классифицированы также по типу используемой ими уязвимости, такой как: переполнение буфера, SQL-инъекция, межсайтовый скриптинг, подделка межсайтовых запросов и т. д.

Актуальность

Информация, полученная в результате обнаружения уязвимости, может быть использована как для написания эксплойта, так и для устранения уязвимости. Поэтому в ней одинаково заинтересованы обе стороны — и взломщик и производитель взламываемого программного обеспечения. Характер распространения этой информации определяет время, которое требуется разработчику до выпуска заплатки.

После закрытия уязвимости производителем шанс успешного применения эксплойта начинает стремительно уменьшаться. Поэтому особой популярностью среди хакеров пользуются так называемые 0-day эксплойты, использующие недавно появившиеся уязвимости, которые еще не стали известны общественности[2].

Связки

Связки эксплойтов представляют из себя пакет эксплойтов сразу под несколько программ (версий) и/или под разные уязвимости в них. В последних версиях связок производится выбор эксплойта именно под конкретную программу пользователя.

Шелл-код

 

Шелл-код (англ. shellcode, код запуска оболочки) — это двоичный исполняемый код, который обычно передаёт управление командному процессору, например '/bin/sh' Unix shell, command.com в MS-DOS и cmd.exe в операционных системах Microsoft Windows. Шелл-код может быть использован как полезная нагрузка эксплойта, обеспечивая взломщику доступ к командной оболочке (англ. shell) в компьютерной системе.

При эксплуатации удаленной уязвимости шелл-код может открывать заранее заданный порт TCP уязвимого компьютера, через который будет осуществляться дальнейший доступ к командной оболочке, такой код называется привязывающим к порту (англ. port binding shellcode). Если шелл-код осуществляет подключение к порту компьютера атакующего, что производится с целью обхода брандмауэра или NAT, то такой код называется обратной оболочкой (англ. reverse shell shellcode).

Принцип работы

Шелл-код обычно внедряется в память эксплуатируемой программы, после чего на него передается управление путём переполнения стека, или при переполнении буфера в куче, или используя атаки форматной строки. Передача управления шелл-коду осуществляется перезаписью адреса возврата в стеке адресом внедрённого шелл-кода, перезаписью адресов вызываемых функций или изменением обработчиков прерываний. Результатом этого является выполнение шелл-кода, который открывает командную строку для использования взломщиком.

Обнаружение

Взломщики пишут шелл-коды часто используя приёмы, скрывающие их атаку. Они часто пытаются выяснить как системы обнаружения вторжений (СОВ) распознают любую входящую атаку. Типичная СОВ обычно просматривает все входящие пакеты в поисках структуры специфичной для шелл-кода (часто большой массив мусорных кодов, в простейшем случае NOP-ов); если она находит такую структуру, пакет уничтожается до того, как он достигнет своей цели. Слабая позиция СОВ в данном случае состоит в том, что она не осуществляет действительно хороший поиск иначе он займёт слишком много времени и таким образом замедлит соединение с интернетом.

Шелл-код почти всегда содержит строку с именем оболочки. Все входящие пакеты содержащие такую строку всегда рассматриваются как подозрительные в глазах СОВ. Также, некоторые приложения не принимают неалфавитно-цифровой ввод (они не принимают что-либо, кроме a-z, A-Z, 0-9, и несколько других символов.)

Для прохождения через все эти меры направленные против вторжения, взломщики используют шифрование, самомодифицирующийся код, полиморфный код и алфавитно-цифровой код.

Переполнение буфера

Пожалуй, один из самых распространенных типов атак в Интернете. Принцип данной атаки построен на использовании программных ошибок, позволяющих вызвать нарушение границ памяти и аварийно завершить приложение или выполнить произвольный бинарный код от имени пользователя, под которым работала уязвимая программа. Если программа работает под учётной записью администратора системы, то данная атака позволит получить полный контроль над компьютером жертвы, поэтому рекомендуется работать под учётной записью рядового пользователя, имеющего ограниченные права на системе, а под учётной записью администратора системы выполнять только операции, требующие административные права.

Переполнение буфера

 

Переполнение буфера (Buffer Overflow) — явление, возникающее, когда компьютерная программа записывает данные за пределами выделенного в памяти буфера.

Переполнение буфера обычно возникает из-за неправильной работы с данными, полученными извне, и памятью, при отсутствии жесткой защиты со стороны подсистемы программирования (компилятор или интерпретатор) и операционной системы. В результате переполнения могут быть испорчены данные, расположенные следом за буфером (или перед ним).

Переполнение буфера является наиболее популярным способом взлома компьютерных систем, так как большинство языков высокого уровня используют технологию стекового кадра — размещение данных в стеке процесса, смешивая данные программы с управляющими данными (в том числе адреса начала стекового кадра и адреса возврата из исполняемой функции).

Переполнение буфера может вызывать аварийное завершение или зависание программы, ведущее к отказу обслуживания (denial of service, DoS). Отдельные виды переполнений, например переполнение в стековом кадре, позволяют злоумышленнику загрузить и выполнить произвольный машинный код от имени программы и с правами учетной записи, от которой она выполняется.

Известны примеры, когда переполнение буфера намеренно используется системными программами для обхода ограничений в существующих программных или программно-аппаратных средствах. Например, операционная система iS-DOS (для компьютеров ZX Spectrum) использовала возможность переполнения буфера встроенной TR-DOS для запуска своего загрузчика в машинных кодах (что штатными средствами в TR-DOS сделать невозможно).

Безопасность

Программа, которая использует уязвимость для разрушения защиты другой программы, называется эксплойтом. Наибольшую опасность представляют эксплойты, предназначеные для получения доступа к уровню суперпользователя или, другими словами, повышения привилегий. Эксплойт переполнения буфера достигает этого путём ввода специально изготовленных входных данных. Такие данные переполняют выделенный буфер и изменяют данные, которые следуют за этим буфером в памяти.

Например, представим гипотетическую программу, которая исполняется с привилегиями суперпользователя и выполняет некоторые функции системного администрирования — к примеру, изменение пароля пользователя. Если программа не проверяет длину введённого нового пароля, то любые данные, длина которых превышает размер выделенного для их хранения буфера, будут просто записаны поверх того, что находилось после буфера. Если в дальнейшем программа передаст управление в эту область памяти, то есть исполнит находящийся в этой области памяти машинный код, то злоумышленник может вставить в неё инструкции на машинном языке, которые будут выполнять любые действия с привилегиями суперпользователя — добавлять и удалять учётные записи пользователей, изменять пароли, изменять или удалять любые файлы и т. д.

Правильно написанные программы должны проверять длину входных данных, чтобы убедиться, что они не больше, чем выделенный буфер данных. Однако программисты часто забывают об этом. В случае если буфер расположен в стеке и стек "растёт вниз" (например в архитектуре x86), то с помощью переполнения буфера можно изменить адрес возврата выполняемой функции, так как адрес возврата расположен после буфера, выделенного выполняемой функцией. Тем самым есть возможность выполнить произвольный участок машинного кода в адресном пространстве процесса. В случае же, если стек "растёт вверх" (в этом случае адрес возврата обычно находятся перед буфером), использовать переполнение буфера для искажения адреса возврата возможно в очень редких случаях.

Даже опытным программистам бывает трудно определить, насколько то или иное переполнение буфера может быть уязвимостью. Это требует глубоких знаний об архитектуре компьютера и о целевой программе. Было показано[кем?], что даже настолько малые переполнения, как запись одного байта за пределами буфера, могут представлять собой уязвимости.

Переполнения буфера широко распространены в программах, написанных на относительно низкоуровневых языках программирования, таких как язык ассемблера, Си и C++, которые требуют от программиста самостоятельного управления размером выделяемой памяти. Устранение ошибок переполнения буфера до сих пор является слабо автоматизированным процессом. Системы формальной верификации программ не очень эффективны при современных языках программирования.

Многие языки программирования, например, Java и Lisp, управляют выделением памяти автоматически, и используют комбинацию статического анализа и проверки корректности действий программы во время выполнения. Это делает ошибки, связанные с переполнением буфера, маловероятными или невозможными. Perl для избежания переполнений буфера обеспечивает автоматическое изменение размера массивов. Однако системы времени выполнения и библиотеки для таких языков всё равно могут быть подвержены переполнениям буфера, вследствие возможных внутренних ошибок в реализации этих систем проверки. В Windows доступны некоторые программные решения, которые предотвращают выполнение кода за пределами переполненного буфера, если такое переполнение было осуществлено. Среди этих решений — DEP в Windows XP SP2, OSsurance и Anti-Execute.

Краткое техническое изложение

Описание

Рассмотрим более подробно случай переполнения буфера, расположенного в области стека. Это удобнее всего сделать с помощью примера программы на языке Си. Пример ориентирован на архитектуру x86.

Когда динамический буфер, представляющий собой автоматический массив, выделяется в функции, он создаётся на стеке во время вызова этой функции. В архитектуре x86 стек растёт от бо́льших адресов к меньшим (или справа налево, в приведённых ниже диаграммах), то есть новые данные помещаются перед теми, которые уже находятся в стеке. Здесь, (DATA) (DATA) (…) представляет существующий стек, и (NEWDATA) — это некоторое новое значение, которое ЦП поместил в стек:

(NEWDATA)(DATA)(DATA)(...)

Записывая данные в буфер, можно осуществить запись за его границами и изменить находящиеся там данные. Когда программа вызывает подпрограмму, она помещает адрес возврата в стек, так что подпрограмма знает, куда возвращать управление после того, как она завершится:

(ADDR)(DATA)(DATA)(...)

Когда выделяется динамический буфер, стек растёт влево на размер буфера. Так, если функция начинается с объявления char a[10], результатом будет:

(.a........)(ADDR)(DATA)(DATA)(...)

В конце подпрограммы память, занятая буфером, освобождается, и вызывается операция RET. Она извлекает адрес возврата из стека и выполняет переход по этому адресу, возвращая управление туда, откуда была вызвана подпрограмма.

Предположим, что 10-байтный буфер предназначен для того, чтобы содержать данные, предоставляемые пользователем (например — пароль). Если программа не проверяет количество символов, которые были введены пользователем, и записывает 14 байт в буфер, эти лишние данные будут помещены поверх адреса возврата. Таким образом, это изменит адрес, по которому будет передано управление, когда завершится подпрограмма, и с которого программа продолжит исполнение после этого.

Если пользователь не злонамерен и вводит более, чем 10 символов, добавочные данные будут скорее всего случайными. В таком случае вполне возможно, что адрес возврата будет указывать на область памяти, которая неподконтрольна текущей исполняемой программе. Это вызовет ошибку сегментации в UNIX-системах или аналогичную ошибку в других операционных системах.

Однако пользователь может подставить в качестве адреса возврата и некий правильный адрес. Это вызовет переход управления в любую точку программы по его выбору. В результате потенциально может быть выполнен любой произвольный код, который этот пользователь поместил в данную область памяти, с теми привилегиями, с которыми выполняется текущая программа.

Пример

Рассмотрим следующую программу на языке Си. Скомпилировав эту программу, мы сможем использовать её для генерации ошибок переполнения буфера. Первый аргумент командной строки программа принимает как текст, которым заполняется буфер.

/* overflow.c - демонстрирует процесс переполнения буфера */

 

#include <stdio.h>

#include <string.h>

 

int main(int argc, char *argv[])

{

char buffer[10];

if (argc < 2)

{

fprintf(stderr, "ИСПОЛЬЗОВАНИЕ: %s строка\n", argv[0]);

return 1;

}

strcpy(buffer, argv[1]);

return 0;

}

Программу можно опробовать с несколькими разными строками. Строки размером в 9 или меньше символов не будут вызывать переполнение буфера. Строки в 10 и более символов будут вызывать переполнение, хотя это может и не приводить к ошибке сегментации.

Эта программа может быть переписана следующим образом, с использованием функции strncpy для предотвращения переполнения. Однако, следует учитывать, что простое отбрасывание лишних данных, как в этом примере, также может приводить к нежелательным последствиям, в том числе, при определённых условиях, к повышению привилегий. Как правило, требуется более тщательная обработка таких ситуаций.

/* better.c - демонстрирует, как исправить ошибку */

 

#include <stdio.h>

#include <string.h>

#define BUFFER_SIZE 10

 

int main(int argc, char *argv[])

{

char buffer[BUFFER_SIZE];

if (argc < 2)

{

fprintf(stderr, "ИСПОЛЬЗОВАНИЕ: %s строка\n", argv[0]);

return 1;

}

strncpy(buffer, argv[1], BUFFER_SIZE);

return 0;

}

Предотвращение

Для того, чтобы сделать переполнение буфера менее вероятным, используются различные приёмы.

Системы обнаружения вторжения

С помощью систем обнаружения вторжения (СОВ) можно обнаружить и предотвратить попытки удалённого использования переполнения буфера. Так как в большинстве случаев данные, предназначенные для переполнения буфера, содержат длинные массивы инструкций No Operation (NOP или NOOP), СОВ просто блокирует все входящие пакеты, содержащие большое количество последовательных NOP-ов. Этот способ, в общем, неэффективен, так как такие массивы могут быть записаны с использованием большого разнообразия инструкций языка ассемблера. В последнее время крэкеры начали использовать коды оболочки с шифрованием, самомодифицирующимся кодом, полиморфным кодом и алфавитно-цифровым кодом а также атаки возврата в стандартную библиотеку для проникновения через эти СОВ.

Защита от повреждения стека

Защита от повреждения стека используется для обнаружения наиболее частых ошибок переполнения буфера. При этом проверяется, что стек вызовов не был изменён перед возвратом из функции. Если он был изменён, то программа заканчивает выполнение с ошибкой сегментации.

Существуют две системы: StackGuard и Stack-Smashing Protector (старое название — ProPolice), обе являются расширениями компилятора gcc. Начиная с gcc-4.1-stage2, SSP был интегрирован в основной дистрибутив компилятора. Gentoo Linux и OpenBSD включают SSP в состав распространяемого с ними gcc.

Размещение адреса возврата в стеке данных облегчает задачу осуществления переполнения буфера, которое ведёт к выполнению произвольного кода. Теоретически, в gcc могут быть внесены изменения, которые позволят помещать адрес в специальном стеке возврата, который полностью отделён от стека данных, аналогично тому, как это реализовано в языке Forth. Однако это не является полным решением проблемы переполнения буфера, так как другие данные стека тоже нуждаются в защите.

Защита пространства исполняемого кода для UNIX-подобных систем

Защита пространства исполняемого кода может смягчить последствия переполнений буфера, делая большинство действий злоумышленников невозможными. Это достигается рандомизацией адресного пространства (ASLR) и/или запрещением одновременного доступа к памяти на запись и исполнение. Неисполняемый стек предотвращает большинство эксплойтов кода оболочки.

Существует два исправления для ядра Linux, которые обеспечивают эту защиту — PaX и exec-shield. Ни один из них ещё не включен в основную поставку ядра. OpenBSD с версии 3.3 включает систему, называемую W^X, которая также обеспечивает контроль исполняемого пространства.

Заметим, что этот способ защиты не предотвращает повреждение стека. Однако он часто предотвращает успешное выполнение «полезной нагрузки» эксплойта. Программа не будет способна вставить код оболочки в защищённую от записи память, такую как существующие сегменты исполняемого кода. Также будет невозможно выполнение инструкций в неисполняемой памяти, такой как стек или куча.

ASLR затрудняет для взломщика определение адресов функций в коде программы, с помощью которых он мог бы осуществить успешную атаку, и делает атаки типа ret2libc очень трудной задачей, хотя они всё ещё возможны в контролируемом окружении, или если атакующий правильно угадает нужный адрес.

Некоторые процессоры, такие как Sparc фирмы Sun, Efficeon фирмы Transmeta, и новейшие 64-битные процессоры фирм AMD и Intel предотвращают выполнение кода, расположенного в областях памяти, помеченных специальным битом NX. AMD называет своё решение NX (от англ. No eXecute), а Intel своё — XD (от англ. eXecute Disabled).

Защита пространства исполняемого кода для Windows

Сейчас существует несколько различных решений, предназначенных для защиты исполняемого кода в системах Windows, предлагаемых как компанией Майкрософт, так и сторонними компаниями.

Майкрософт предложила своё решение, получившее название DEP (от англ. Data Execution Prevention — «предотвращение выполнения данных»), включив его в пакеты обновлений для Windows XP и Windows Server 2003. DEP использует дополнительные возможности новых процессоров Intel и AMD, которые были предназначены для преодоления ограничения в 4 ГиБ на размер адресуемой памяти, присущий 32-разрядным процессорам. Для этих целей некоторые служебные структуры были увеличены. Эти структуры теперь содержат неиспользуемый (зарезервированный) бит NX. DEP использует этот бит для предотвращения атак, связанных с изменением адреса обработчика исключений (так называемый SEH-эксплойт). DEP обеспечивает только защиту от SEH-эксплойта, он не защищает страницы памяти с исполняемым кодом.

Кроме того, Майкрософт разработала механизм защиты стека, предназначенный для Windows Server 2003. Стек помечается с помощью так называемых «осведомителей» (англ. canary), целостность которых затем проверяется. Если «осведомитель» был изменён, значит, стек повреждён.

Существуют также сторонние решения, предотвращающие исполнение кода, расположенного в областях памяти, предназначенных для данных или реализующих механизм ASLR.

Использование безопасных библиотек

Проблема переполнений буфера характерна для языков программирования Си и C++, потому что они не скрывают детали низкоуровневого представления буферов как контейнеров для типов данных. Таким образом, чтобы избежать переполнения буфера, нужно обеспечивать высокий уровень контроля за созданием и изменениями программного кода, осуществляющего управление буферами. Использование библиотек абстрактных типов данных, которые производят централизованное автоматическое управление буферами и включают в себя проверку на переполнение — один из инженерных подходов к предотвращению переполнения буфера.

Два основных типа данных, которые позволяют осуществить переполнение буфера в этих языках — это строки и массивы. Таким образом, использование библиотек для строк и списковых структур данных, которые были разработаны для предотвращения и/или обнаружения переполнений буфера, позволяет избежать многих уязвимостей.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.