Здавалка
Главная | Обратная связь

Системы аналитических вычислений



Но сначала чуть подробнее о том, что же умеют делать универсальные системы компьютерной алгебры, к которым относятся Maxima и Axiom. Если кратко, то подобные программы обладают «знаниями» алгебры и математического анализа в объеме первых курсов любого технического университета. Системы аналитических вычислений (САВ) умеют преобразовывать выражения: упрощать, приводить подобные, раскрывать скобки или, наоборот, группировать подобные члены. Они умеют вычислять производные, пределы и интегралы, решать системы алгебраических и дифференциальных уравнений, производить вычисления с матрицами. Могут упрощать и преобразовывать тригонометрические выражения. Все это делается точно, аналитически.

Рис. 1. Упрощение тригонометрического выражения, решение системы линейных уравнений и построение графика функции y=x/[(x–1)(x^2–2)]

Впрочем, не всякая задача имеет точное решение, и поэтому численные вычисления тоже не забыты, причем с рядом очень приятных особенностей. Так, величина целых чисел неограничена, а вычисления с плавающей точкой могут выполняться с любой заранее заданной точностью. Хотите увидеть факториал 1000 — пожалуйста! А ведь это число с 2568 цифрами. Хотите число ? с сотней знаков после запятой — никаких проблем! Главное, чтобы хватило вычислительных ресурсов компьютера. Ну и наконец, построение красивых графиков — неотъемлемая часть любой системы аналитических вычислений. Математика — наука абстрактная, а человеческое мышление образно. Хорошо известно — подавляющая часть информации поступает к человеку через зрение, поэтому без визуализации математических данных не обойтись.

Рис. 2. График функции y=x/[(x–1)(x^2–2)]

Помимо основных математических возможностей, каждая система аналитических вычислений имеет встроенный язык программирования. С помощью этого языка возможности системы можно расширять, и каждая САВ имеет большую библиотеку пакетов для решения специальных математических задач.

Рис. 3. Тригонометрический винт

Посмотрим, как работает САВ не практике. На рис. 1 и 2 показано, как Maxima справляется с тремя задачками из курса школьной алгебры: упрощение тригонометрического выражения, решение системы линейных уравнений и построение графика функции y=x/[(x–1)(x2–2)]. Трехмерные графики выглядят еще интереснее. Axiom обладает своей собственной графической подсистемой, способной создавать двух- и трехмерные графики очень высокого качества. На рис. 3 изображена поверхность, известная как тригонометрический винт и построенная с помощью Axiom. А Maxima для построения графиков использует внешнюю программу gnuplot. Результат работы такой «связки» можно видеть на рис. 4. Давайте устроим маленькую математическую викторину — что за функция изображена на этом рисунке? Ответ найдете в конце статьи.

Рис. 4.

Как видите, все довольно просто. Правда, и задачи тоже простые — они выбраны такими для иллюстрации. Но главная сила САВ в том, что они способны решать чрезвычайно громоздкие задачи. Например, Axiom может взять любой интеграл, если только он «берется» в элементарных функциях. Более того: в отличие от численных расчетов, являющихся по своей природе приближенными и потому не имеющих «доказательной силы» с точки зрения чистой математики, аналитические результаты, полученные с помощью САВ, вполне можно использовать для строгих математических доказательств. Но даже если вы не профессионал в математике и подобные возможности вам ни к чему, все равно использование САВ в виде интеллектуального калькулятора может быть весьма полезным.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.