Здавалка
Главная | Обратная связь

Усилитель-выбор рабочей точки



Усилительные каскады переменного тока на биполярных транзисторах Общие положения

Характерной особенностью современных электронных усилителей является многообразие схем, по которым они могут быть спроектированы. Однако среди этого многообразия можно выделить наиболее типичные схемы, содержащие элементы и цепи, которые чаще всего встречаются в усилительных устройствах независимо от их функционального назначения.

Современные усилители выполняются преимущественно на биполярных и полевых транзисторах в дискретном или интегральном исполнении, причем усилители в микроисполнении отличаются от своих дискретных аналогов, главным образом, конструктивно-технологическими особенностями. Схемные же построения принципиальных отличий не имеют. Наибольшее распространение получили каскады на биполярных и полевых транзисторах, использующие соответственно схемы включения транзистора с общим эмиттером и общим истоком. Реже используются схемы включения с общим коллектором и общим стоком. Схемы включения с общей базой или общим затвором находят применение только в узком классе устройств, например во входных цепях радиоприемных устройств, работающих в диапазоне УКВ. Рассмотрение таких каскадов, в силу специфики построения, связанной с сильным влиянием на их свойства паразитных параметров реальной конструкции каскада, выходит за рамки настоящего курса.

В технической литературе наименование (обозначение) каскада усилителя производится в соответствии со схемой включения транзистора: усилитель ОЭ, ОК, ОБ, ОИ, ОС или ОЗ. В дальнейшем будут рассмотрены только принципы построения и основные параметры каскадов, использующих все схемы включения биполярных транзисторов и с ОИ, ОС – для полевых транзисторов.

Понятие о классах усиления усилительных каскадов

Режим работы усилителя определяется начальным положением рабочей точки (точки покоя) на сквозной динамической характеристике усилительного элемента, т.е. на зависимости выходного тока усилительного элемента от ЭДС (напряжения) входного сигнала. Вид типичной сквозной динамической характеристики показан на рисунке 4.1.

Рисунок 4.1. Сквозная характеристика усилительного каскада

В усилителях используется несколько принципиально различных режимов его работы, называемых классами усиления. Для обозначения различных классов усиления употребляют прописные латинские буквы. Различают пять основных режимов работы усилительного элемента – А, В, АВ, С и D. Рассмотрим их подробнее.

В режиме А рабочая точка (обозначена точкой РА на сквозной характеристике рисунка 4.1) выбирается на середине прямолинейного участка сквозной динамической характеристики. Возможно и иное расположение рабочей точки. Необходимо, чтобы амплитудные значения сигнала не выходили за пределы линейного участка сквозной характеристики. Выходной сигнал, в этом случае, практически повторяет форму входного сигнала при относительно небольшой величине последнего. Нелинейные искажения при этом минимальны. Ток в выходной цепи существует в течение всего периода входного сигнала. Среднее значение выходного тока велико по сравнению с амплитудой (или действующим значением) его переменной составляющей. Поэтому КПД усилительного каскада невысок – 20...30%[1]. В связи с этим режим усиления А используют лишь в маломощных каскадах (предварительных усилителях), для которых, как правило, важен малый коэффициент нелинейных искажений усиливаемого сигнала, а значение КПД не играет существенной роли.

В режиме В рабочая точка выбирается так, чтобы ток через усилительный элемент протекал только в течение половины периода входного сигнала. Усилительный элемент работает с так называемой отсечкой. Углом отсечки принято называть половину той части периода, в течение которого проходит ток. При работе в режиме В угол отсечки q @ 90° (π/2). Ток покоя оказывается равным нулю, но форма выходного тока из-за нижнего изгиба сквозной характеристики искажается относительно входного даже в пределах проводящего полупериода. В кривой тока появляются высшие гармоники, что приводит к увеличению нелинейных искажений по сравнению с режимом А. Среднее значение выходного тока уменьшается, в результате чего КПД усилителя достигает 60...70%.

В режиме С рабочая точка выбирается таким образом, чтобы угол отсечки оказался q < 90°. В этом режиме обеспечивается КПД до 80...85%. Однако высокий уровень линейных искажений существенно ограничивает применение его для усиления колебаний.

Существует промежуточный режим АВ, когда рабочая точка выбирается на сквозной характеристике ниже, чем в режиме А, и выше, чем в режиме В (но все же ближе к режиму В, в начале линейного участка). Поэтому и показатели этого режима имеют промежуточное значение между режимами А и В – КПД 40...50% при невысоком уровне нелинейных искажений.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.