Здавалка
Главная | Обратная связь

ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ



 

Этим именем называется закон логики, позволяющий отбрасывать двойное отрицание. Этот закон можно сформулировать так:отрицание отрицания дает утверждение, или:повторенное дважды отрицание дает утверждение. Например: «Если неверно, что Вселенная не является бесконечной, то она бесконечна».

Закон двойного отрицания был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его следующим образом: если из отрицания какого-либо высказывания следует противоречие, то имеет место двойное отрицание исходного высказывания, то есть оно само.

В символической форме закон записывается так:

~~А® А,

 

если неверно, что не-А, то верно А.

Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называтьобратным законом двои- | него отрицания: утверждение влечет свое двойное отрицание. Например: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты».

Символически:

А® ~~ А,

если А, то неверно что не -А.

Объединение этих законов дает так называемый полный закон двойного отрицания:

~~А«А, неверно, что не-А, если и только если верно А.

ЗАКОНЫ КОНТРАПОЗИЦИИ

Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания:из условного высказывания «если есть первое, то есть второе» вытекает «если нет второго, то нет и первого», и наоборот.

Символически:

(А ® В) ® (~ В ® ~ А),

если дело обстоит так, что если А, то В, то если не-В, то не-А;

(~ В ® ~ А) ® (А® В),

если дело обстоит так, что если не-В, то не-А, то если А, то В.

К примеру: из высказывания «Если есть следствие, то есть и причина» следует высказывание «Если нет причины, нет и следствия», и из второго высказывания вытекает первое.

К законам контрапозиции обычно относят также законы:

(А® В) ®{В ®~ А),

если дело обстоит так, что если А, то не-5, то если В, то не-А. Например, «Если квадрат не является треугольником, то треугольник не квадрат»;

( ~ А ®В) ® (~ В ®А),

если верно, что если не-А, то В, то если не- В, то А. К примеру:

«Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно».

Контрапозиция подобна рокировке в шахматной игре. И подобно тому, как редкая партия проходит без рокировки, так и редкое наше рассуждение обходится без контрапозиции.

МОДУС ПОНЕНС

 

Слово «модус» в логике означает разновидность некоторой общей формы рассуждения. «Модус поненс» - термин средневековой логики, обозначающий определенное правило вывода и соответствующий ему логический закон.

Правило вывода модус поненс, обычно называемое правилом отделения или гипотетическим силлогизмом, позволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого высказывания:

Если А, то В, А

В

 

Здесь «если А, то В» и «А» - посылки, «В» - заключение;

горизонтальная черта стоит вместо слова «следовательно». Другая запись:

Если А, то В. А. Следовательно, В.

Благодаря этому правилу от посылки «если А, то В», используя посылку «А», мы как бы отделяем заключение «В». Например:

 

 

Если у человека грипп, он болен. У человека грипп.

Человек болен.

 

Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом еще в III в. до н.э.

Соответствующий правилу отделения логический закон формулируется так:

(А ® В) & А ® В,

если верно, что если А, то В, и А, то верно В. Например: «Если при дожде трава растет быстрее и идет дождь, то трава растет быстрее».

Рассуждение по правилу модус понес идет от утверждения основания истинного условного высказывания к утверждению его следствия. Это логически корректное движение мысли иногда путается со сходным, но логически неправильным ее движением от утверждения следствия истинного условного высказывания к утверждению его основания.

Например, правильным является умозаключение:

 

Если висмут - металл, он проводит электрический ток.

Висмут - металл,

Висмут проводит электрический ток.

 

Но внешне сходное с ним умозаключение:

 

Если висмут - металл, он проводит электрический ток.

Висмут проводит электрический ток.

Висмут металл.

 

логически некорректно. Рассуждая по последней схеме, можно от истинных посылок прийти к ложному заключению. Например:

 

Если человек собирает марки, он коллекционер.

Человек - коллекционер.

Человек собирает марки.

 

Далеко не все коллекционеры собирают именно марки; из того, что человек коллекционер, нельзя заключать, что он собирает как раз марки. Истинность посылок не гарантирует истинности заключения.

Против смешения правила модус поненс с указанной неправильной схемой предостерегает совет: от подтверждения основания к подтверждению следствия заключать можно, от подтверждения следствия к подтверждению основания - нет.

МОДУС ТОЛЛЕНС

 

Так средневековые логики называли следующую схему рассуждения:

Если А, то В; неверно В;

Неверно А.

 

Другая запись:

 

Если А, то В. Не- В. Следовательно, не-А.

 

Эта схема часто называется принципом фальсификации: если из какого-то утверждения вытекает следствие, оказывающееся ложным, это означает, что и само утверждение ложно. Посредством схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания данного высказывания. Например:

 

Если гелий - металл, он электропроводен.

Гелий неэлектропроводен.

Гелий - не металл.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.