Здавалка
Главная | Обратная связь

Основной объект криптографии



Основной объект криптографии можно представить схемой на рис. 1.1:

Рисунок 1.1. Основной объект криптографии

 

Здесь A и B – удаленные законные пользователи защищаемой информации. Они хотят обмениваться информацией по общедоступному каналу связи. П – незаконный пользователь (противник), который может перехватывать передаваемые по каналу связи сообщения и пытаться извлечь из них интересующую его информацию.

Криптография занимается методами преобразования информации, которые бы не позволили противнику извлечь ее из перехватываемых сообщений. При этом по каналу связи передается уже не сама защищаемая информация, а результат ее преобразования с помощью шифра, и для противника возникает задача вскрытия шифра.

Вскрытие (взламывание) шифра – процесс получения защищаемой информации (открытого текста) из шифрованного сообщения (шифртекста) без знания применения шифра.

Шифрование (зашифровывание) – процесс применения шифра к защищаемой информации, т.е. преобразование защищаемой информации в шифрованное сообщение с помощью определенных правил, содержащихся в шифре.

Дешифрование – процесс, обратный шифрованию, т.е. преобразование шифрованного сообщения в защищаемую информацию с помощью определенных правил, содержащихся в шифре.

Помимо перехвата и вскрытия шифра противник может попытаться уничтожить или модифицировать защищаемую информацию в процессе ее передачи. Это уже совсем другой вид угроз для информации. Для защиты от таких угроз разрабатываются свои специфические методы.

В мире существует большое разнообразие видов защищаемой информации (документальная, телефонная, телевизионная, компьютерная). Каждый вид информации имеет свои специфические особенности, которые сильно влияют на выбор методов шифрования информации. Большое значение имеют объем и требуемая скорость передачи зашифрованной информации. Характер защищаемых секретов или тайн существенно влияет на выбор вида шифра, его параметров и стойкости. Необходимо также учитывать возможности противника. Поэтому, в силу того, что не существует единого, подходящего для всех случаев способа шифрования информации, приходится разрабатывать различные шифры, которые реализуются в различных типах шифрующих машин и устройств.

Итак, выбор криптографической системы зависит от особенностей информации, ее ценностей и возможностей владельцев по защите своей информации.

Среди многочисленных угроз для защищаемой информации криптография противостоит лишь некоторым. Поэтому естественно сочетать криптографию с мерами по защите информации от других угроз.

Нужно отметить, что обмен защищаемой информации происходит не только между двумя абонентами (законными пользователями), а в сети абонентов. При этом возникают новые задачи. Сети могут быть разных размеров: от единиц до тысяч абонентов. Тем не менее, основные понятия и идеи криптографии можно понять на примере описанного основного объекта криптографии.

Приведенную на рис 1.2 формальную схему можно также считать моделью типичной ситуации, в которой применяются криптографические методы защиты информации.

 

Рис. 1.2. Формальная схема

 

Обозначим открытый текст буквой Р (от английского слова plaintext). Это может быть текстовый файл, битовое изображение, оцифрованный звук — что угодно. Единственное ограничение связано с тем, что, поскольку, прел метом изложения является компьютерная криптография, под Р понимание;; исключительно двоичные данные.

Шифртекст обозначается буквой С (от английского слова ciphertext) и также представляет собой двоичные данные. Объем полученного шифртекста иногда совпадает с объемом соответствующего открытого текста, а иногда превышает его. После зашифрования преобразованный открытый текст может быть передан по каналам компьютерной сети или сохранен в памяти компьютера.

На вход функции шифрования Е подается Р, чтобы на выходе получить С.

В обозначениях, принятых в математике, это записывается как:

Е(Р) = C

При обратном преобразовании шифртекста в открытый текст на вход функции расшифрования D поступает С, а на выходе получается Р:

D(C) = М

Поскольку смысл любого криптографического преобразования открытого текста состоит в том, чтобы потом этот открытый текст можно было восстановить в первозданном виде, верно следующее соотношение:

D(E(P)) = Р

 

Помогая сохранить содержание сообщения в тайне, криптография может быть использована, чтобы дополнительно обеспечить решение следующих задач:

§ Аутентификация. Получателю сообщения требуется убедиться, что оно исходит от конкретного отправителя. Злоумышленник не может прислан, фальшивое сообщение от чьего-либо имени.

§ Целостность. Получатель сообщения в состоянии проверить, были ли внесены какие-нибудь изменения в полученное сообщение в ходе его передачи. Злоумышленнику не позволено заменить настоящее сообщение на фальшивое.

§ Неоспоримость. Отправитель сообщения должен быть лишен возможности впоследствии отрицать, что именно он является автором этого сообщения.

Перечисленные задачи часто приходится решать на практике для организации взаимодействия людей при помощи компьютеров и компьютерных сетей. Подобные же задачи возникают и в случае личностного человеческого общения: часто требуется проверить, а действительно ли ваш собеседник тот, за кого он себя выдает, и подлинны ли предъявленные им документы. будь то паспорт, водительское удостоверение или страховой полис. Вот почему в обыденной жизни не обойтись без аутентификации, проверки целостности и доказательства неоспоримости, а значит и без криптографии.

 

Что такое ключ

Под ключом в криптографии понимают сменный элемент шифра, который применен для шифрования конкретного сообщения.

Очевидно, что придумывание хорошего шифра – дело трудоемкое и дорогостоящее. Поэтому желательно увеличить время жизни хорошего шифра и использовать его для шифрования как можно большего количества сообщений. Но при этом возникает опасность, что противник уже вскрыл шифр и читает защищаемую информацию. Если же в шифре есть сменный ключ, то, заменив ключ, можно сделать так, что разработанные противником методы уже не дают эффекта. Этот принцип полезен и важен при использовании дорогостоящих шифрующих машин (шифрмашин) в больших сетях связи.

Безопасность защищаемой информации определяется в первую очередь ключом. Сам шифр (шифрмашина, принцип шифрования) считается известным противнику и доступным для предварительного изучения. Но применяемые в шифрах преобразования информации стали зависеть от ключа. У противника появилась новая задача — определить ключ, после чего можно легко прочитать зашифрованные на этом ключе сообщения. Законные же пользователи, прежде чем обмениваться шифрованными сообщениями, должны тайно от противника обменяться ключами или установить одинаковый ключ на обоих концах канала связи.

Когда надежность криптографического алгоритма обеспечивается за счет сохранения в тайне сути самого алгоритма, такой алгоритм шифрования называется ограниченным. Ограниченные алгоритмы представляют значительный интерес с точки зрения истории криптографии, однако совершенно непригодны при современных требованиях, предъявляемых к шифрованию. Ведь в этом случае каждая группа пользователей, желающих обмениваться секретными сообщениями, должна обзавестись своим оригинальным алгоритмом шифрования. Применение готового оборудования и стандартных программ исключено, поскольку тогда любой сможет приобрести это оборудование и эти программы и ознакомиться с заложенным в них алгоритмом шифрования. Придется разрабатывать собственный криптографический алгоритм, причем делать это надо будет каждый раз, когда кто-то из пользователей группы захочет ее покинуть или когда детали алгоритма случайно станут известны посторонним.

В современной криптографии эти проблемы решаются с помощью использования ключа, который обозначается буквой К (от английского слова key). Ключ должен выбираться среди значений, принадлежащих множеству, которое называется ключевым пространством. И функция шифрования Е, и функция расшифрования D зависят от ключа. Сей факт выражается присутствием К в качестве подстрочного индекса у функций Е и D:

Е к (Р) = С

D к (С) = Р

По-прежнему справедливо следующее тождество:

D k (E k (P)) = P

Некоторые алгоритмы шифрования используют различные ключи для шифрования и расшифрования. Это означает, что ключ шифрования К 1 отличается от ключа расшифрования К 2 . В этом случае справедливы следующие соотношения:

Е к 1 ( P ) = С

D k2 (С) = Р

D k2 (E k1 (Р) ) = Р

Надежность алгоритма шифрования с использованием ключей достигается., за счет их надлежащего выбора и последующего хранения в строжайшем секрете. Это означает, что такой алгоритм не требуется держать в тайне. Можно организовать массовое производство криптографических средств, основу функционирования которых положен данный алгоритм. Знание криптографического алгоритма не позволит злоумышленнику прочесть зашифрованные сообщения, поскольку он не знает секретный ключ, использованный для их зашифрования.

 

С учетом вышесказанного, изменим схему основного объекта криптографии — добавим недоступный для противника секретный канал связи для обмена ключами:

Практическое построение таких сетей связи стало еще более дорогостоящим мероприятием.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.