Здавалка
Главная | Обратная связь

Биологические основы очистки и дезодорации газов. Методы биодезодорации.



Основными загрязнителями атмосферы городов являются предприятия нефтеперерабатывающей, химической, пищевой и перерабатывающей промышленности, сельскохозяйственные комплексы, отстойники сточных вод, установки по обезвреживанию отходов, автотранспорт. Среди загрязняющих веществ – органические (ароматические и непредельные углеводороды, азот-, кислород-, серо- и галогенсодержащие соединения) и неорганические вещества (сернистый газ, сероуглерод,иокислы углерода, аммиак, хлорводород, галогены и др.).

Для очистки воздуха применяют различные методы – физические, химические и биологические.

Среди применяемых физических методов – абсорбция примесей на активированном угле и других поглотителях, абсорбция жидкостями.

Наиболее распространенными химическими методами очистки воздуха являются озонирование, прокаливание, каталитическое дожигание, хлорирование.

Биологические методы очистки газовоздушных выбросов базируются на способности микроорганизмов разрушать в аэробных условиях широкий спектр веществ и соединений до конечных продуктов, СО2 и Н2О. Только представители рода Pseudomonas способны использовать в качестве единственного источника углерода, серы или азота свыше 100 соединений – загрязнителей биосферы.

Подавляющее число токсических загрязнителей атмосферы может быть разрушено монокультурами микроорганизмов, но более эффективно применение смешанных культур, имеющих больший каталитический потенциал и, следовательно, деструктурирующую способность.

Для биологической очистки воздуха применяют три типа установок:биофильтры, биоскрубберы и биореакторы с омываемым слоем.

Принципиальная схема для биологической очистки воздуха была предложена в 1940 г. Прюссом. Первый биофильтр в Европе был построен в ФРГ в 1980 г. Спустя три года, в 1984 г. Только в ФРГ функционировало и находилось в стадии запуска около 240 установок.

Основным элементом биофильтра для очистки воздуха, как и водоочистного биофильтра, является фильтрующий слой, который сорбирует токсические вещества из воздуха. Далее эти вещества в растворенном виде диффундируют к микробным клеткам, включаются в них и подвергаются деструкции. В качестве носителя для фильтрующего слоя используют природные материалы – компост, торф и др. Эти материалы содержат в своем составе различные минеральные соли и вещества, необходимые для развития микроорганизмов. Поэтому в биофильтры не вносят каких-либо минеральных добавок. Воздух, подлежащий очистке, подается вентилятором в систему, проходит через фильтрующий слой в любом направлении, снизу – вверх, или – наоборот. При этом воздух должен проходить через всю массу фильтрующего слоя равномерно. Поэтому требуется однородность слоя и определенная степень влажности. Оптимальная для очистки воздуха влажность фильтрующего слоя составляет 40–60 %. Увлажнение материала обеспечивается распылением воды на поверхности фильтрующего слоя. При избыточной влажности в толще слоя происходит образование анаэробных зон с высоким аэродинамическим сопротивлением. В результате снижается время контакта потока воздуха с поглотителем и падает эффективность очистки. Температурный режим и Рн в биофильтре поддерживается постоянным.

Для обеспечения стабильной работы биофильтров следует соблюдать комплекс мер, важнейшими из которых являются следующие:

Воздух, подаваемый на очистку в биофильтр, предварительно увлажняют в биоскруббере до относительной влажности в 95–100 %. При заполнении фильтрующего слоя для снижения аэродинамического сопротивления в материал добавляют гранулы (диаметром 3–10 мм) из синтетических полимерных материалов (полиэтилена, полистирола), а также частицы автопокрышек, активированный уголь. Масса добавок составляет от 30 до 70 % от массы фильтрующего материала.

Для предотвращения резкого закисления материала фильтрующего слоя в ходе трансформации органики в него добавляют известняк или карбонат кальция.

С целью избежания ситуаций, когда микроорганизмы, входящие в состав рабочего тела биофильтра, могут подавляться токсическими веществами в результате, например, залповых выбросов, в материал вносят активированный уголь.

Эффективность работы биофильтра определяется газодинамическими параметрами фильтрующего слоя, спектром и концентрацией присутстсвующих в воздухе веществ и ферментативной активностью микрорганизмов-деструкторов.

Стационарное состояние и наиболее высокая скорость биоочистки наступают спустя некоторое время после запуска биофильтра. Требуется некоторый период для созревания и адаптации микробиологического це-

ноза. Длительность периода адаптации зависит от концентрации веществ в воздухе и микробного пейзажа в диффузионном слое и может составлять от нескольких часов до нескольких недель. Концентрация микроорганизмов в ходе очистки возрастает и может стать избыточной. Поэтому периодически материал фильтрующего слоя приходится обновлять. Длительность циклов достаточно велика и составляет несколько лет.

Принцип функционирования биоскрубберов отличается тем, что процесс очистки воздуха реализуется в две стадии в двух различных установках. На первом этапе в абсорбере токсические вещества, находящиеся в воздухе, а также кислород, растворяется в воде. В результате воздух выходит очищенным, а загрязненная вода далее следует на очистку.

Применяют различные типы абсорберов (барботажные, насадочные, распылительные, форсуночные и т.д.). Цель конструкционных усовершенствований заключается в увеличении площади поверхности раздела фаз, газовой и жидкости. Это определяет эффективность абсорбции.

На второй стадии загрязненная вода поступает в аэротенк, где она регенерируется. Очищение воды в аэротенке происходит по обычной схеме с участием кислорода. В ходе очистки сложные органические вещества окисляются микроорганизмами, формирующими активный ил, до конечных продуктов с образованием биомассы.

Биореактор с омываемым слоем: рабочим телом этой биосистемы являются иммобилизованные микроорганизмы. Биослой реактора представляет собой гранулы с иммобилизованными микробными клетками. Этот слой омывается водой, содержащей необходимые для развития клеток минеральные вещества. Загрязненный воздух проходит через него, при этом вещества, подлежащие деструкции, диффундируют в водную пленку, покрывающую частицы биокатализатора, и далее окисляются микроорганизмами.

Скорость деструкции может лимитироваться скоростью диффузии веществ из газовой фазы в жидкую, а также скоростью протекания реакций в микробных клетках. Скорость диффузии, в свою очередь, зависит от природы токсических веществ и их концентраций.

Стационарный режим биореактора с омываемым слоем после его запуска наступает через 5–10 дней. При использовании заранее адаптированных к очищаемым веществам микроорганизмов этот срок может быть сокращен до нескольких часов. Периодически, обычно раз в несколько месяцев, биослой очищают от избытка биомассы и наполняют свежими гранулами.

 

Наиболее распространенным типом установок являются биофильтры. Они достаточно дешевы, малоэнергоемки, требуют незначительных расходов воды. Однако производительность биофильтров сравнительно невысока, – от 5 до 400 м3 очищаемого воздуха на 1 м2 поперечного сечения фильтрующего слоя/ч. Высота биофильтров из-за требований однородности структуры и газодинамических ограничений невелика (около 1 м), поэтому они занимают большие площади (от 10 до 1600 м2). Степень очистки воздуха в биофильтрах – достаточно высока. Например, используемые в сельском хозяйстве ФРГ биофильтры обеспечивают 90 % очистку воздуха от дурнопахнущей органики.

Биоскрубберы по сравнению с биофильтрами занимают меньшую площадь, так как представляют собой башни высотой несколько метров. Эксплуатационные затраты при использовании биоскрубберов выше, так как процесс биоочистки воды требует существенных затрат. Применение биоскрубберов эффективно при наличии в воздухе хорошо растворимых токсических веществ. Производительность биоскрубберов существенно выше по сравнению с биофильтрами, при этом эффективность очистки также высока.

Наиболее перспективными для очистки воздуха являются биореакторы с омываемым слоем. Эти установки, практически не уступая в степени очистки, характеризуются более высокой удельной производительностью (несколько тысяч кубометров очищаемого воздуха в час). Такие малогабаритные установки очень эффективны для очистки воздуха предприятий интенсивного животноводства. Степень очистки воздуха в реакторе с иммобилизованными на активированном угле микроорганизмами от ацетона, бутанола, пропионового альдегида, этилацетата достигает 90 % при удельной производительности установки 10 000 ч–1.

Существуют другие подходы для очистки воздуха, например, на основе растущей суспензии микроорганизмов. Пропускание воздуха, насыщенного сероводородом, сернистым ангидридом и парами серной кислоты, через интенсивную культуру микроводоросли Chlorella, имеющую большую поверхность контакта суспензии с воздухом, обеспечивает 100 % очистку воздуха при производительности установки до 1 млн. м3/ч.


Тестовые задания







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.