Здавалка
Главная | Обратная связь

Радикальный признак Коши



 

Теорема.

Пусть дан ряд с положительными членами и существует конечный или бесконечный предел . Тогда ряд сходится при и расходится при .

 

Как и для признака Даламбера, в случае, когда l=1, вопрос о сходимости ряда остается открытым. Доказательство теоремы аналогично доказательству признака Даламбера.

 

 

Интегральный признак Коши

Обобщенный гармонический ряд

 

Теорема.

Если члены знакоположительного ряда могут быть представлены как числовые значения некоторой непрерывной монотонно убывающей на промежутке функции так, что , то:

1) если сходится, то сходится и ряд

2) если расходится, то расходится также и ряд

 

 

 

Рассмотрим криволинейную трапецию, ограниченную сверху графиком функции y=f(x), основанием которой служит отрезок оси Ох от х=1 до х=n.

Построим входящие и выходящие прямоугольники, основаниями которых служат отрезки [1;2],[2;3],... Учитывая геометрический смысл определенного интеграла, запишем:

или

или

 

Случай 1. Несобственный интеграл сходится, т.е. . Поскольку , то с учетом неравенства имеем: , т.е. . Так как последовательность частичных сумм монотонно возрастает и ограничена сверху (числом ), то, по признаку существования предела, имеет предел.

Следовательно, ряд сходится.

Случай 2. Несобственный интеграл расходится. Тогда и интегралы неограниченно возрастают при . Учитывая, что , получаем, что при . Следовательно, данный ряд расходится.

 

Ряд ,

где p>0 – действительное число, называется обобщенным гармоническим рядом. Для исследования ряда на сходимость применим интегральный признак Коши.

Рассмотрим функцию . Эта функция непрерывна, монотонно убывает на промежутке и . При имеем:

При p=1 имеем гармонический ряд , который расходится. Итак, ряд сходится при , расходится при . В частности, ряд сходится.

 

 

Знакочередующиеся и знакопеременные ряды







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.