Здавалка
Главная | Обратная связь

Абсолютная и условная сходимость числовых рядов.



Свойства абсолютно сходящихся рядов.

Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся, если сам сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место: на такие ряды переносятся основные свойства конечных сумм:

  1. Если ряд абсолютно сходится и имеет сумму S, то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму S, что и исходный ряд (теорема Дирихле)
  2. Абсолютно сходящиеся ряды с суммами и можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна + (или соответственно - )
  3. Под произведением двух рядов и понимают ряд вида

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

 

 

Степенные ряды

Функциональные ряды

Основные понятия

Ряд, членами которого являются функции от х, называется функциональным:

Придавая х определенное значение , мы получим числовой ряд

,

который может быть как сходящимся, так и расходящимся.

Если полученный числовой ряд сходится, то точка называется точкой сходимости ряда ; если же ряд расходится – точкой расходимости функционального ряда.

Совокупность числовых значений аргумента х, при которых функциональный ряд сходится, называются его областью сходимости.

В области сходимости функционального ряда его сумма является некоторой функцией от х: S=S(x). Определяется она в области сходимости равенством ,где – частичная сумма ряда.

 

Среди функциональных рядов особую роль играет ряд, членами которого являются степенные функции аргумента х, т.е. так называемый степенной ряд:

Действительные (или комплексные) числа называются коэффициентами ряда, - действительная переменная.

Ряд расположен по степеням х. Рассматривают также степенной ряд, расположенный по степеням , т.е. ряд вида , где – некоторое постоянное число.

 

Сходимость степенных рядов.

 

Область сходимости степенного ряда содержит по крайней мере одну точку: х=0 (ряд сходится в точке)

 

Теорема Н. Абеля

 

Теорема

Если степенной ряд сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству

 

По условию ряд сходится. Следовательно, по необходимому признаку сходимости . Отсюда следует, что величина ограничена, т.е. найдется такое число М>0, что для всех n выполняется неравенство , n=1, 2,..

Пусть , тогда величина и, следовательно, , т.е. модуль каждого члена ряда не превосходит соответствующего члена сходящегося (q<1) ряда геометрической прогрессии. Поэтому по признаку сравнения при ряд абсолютно сходящийся.

 

Следствие

Если ряд расходится при , то он расходится и при всех х, удовлетворяющих неравенству

 

Действительно, если допустить сходимость ряда в точке , для которой , то по теореме Абеля ряд сходится при всех х, для которых , и, в частности, в точке , что противоречит условию.

 

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.