Здавалка
Главная | Обратная связь

Следствия из теоремы о вписанном угле в окружность.

Справочник репетитора по математике. Свойства окружности и ее элементов

Теоретические справочные материалы по геометрии для выполнения заданий от репетитора по математике. В помощь ученикам при решении задач.

Терема о вписанном угле в окружность.


Теорема: вписанный в окружность угол равен половие градусной меры дуги, на которую он опирается (или половине центрального угла, соответствующего данной дуге), то есть .

 

Следствия из теоремы о вписанном угле в окружность.

2.1) Свойство углов, опирающихся на одну дугу.

Теорема: если вписанные углы опираются на одну дугу, то они равны (если они опираются на дополнителные дуги, их сумма равна

 

2.2) Свойство угла, опирающегося на диаметр.

Теорема: вписанный угол в окружность опирается на диаметр тогда и только тогда, когда он прямой.


AC-диаметр

 

3) Cвойство отрезков касательных. Окружность, вписанная в угол.

Теорема 1: если из одной точки, не лежащей на окружности, проведены к ней две касательные, то их отрезки равны, то есть PB=PC.


Теорема 2: Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть PO-биссектриса.

 

4) Свойство отрезков хорд при внутреннем пересечении секущих.
Теорема 1: произведение отрезков одной хорды равно произведению отрезков другой хорды, то есть

= .

Теорема 2: угол между хордами равен полусумме дуг, которые этими хордами образуются на окружности, то есть

 

5) Свойство отрезков хорд при внешнем пересечении секущих.

Теорема 1: произведение отрезков одной секущей равно произведению отрезков другой, то есть

= .

Теорема 2: угол между секущими равен полуразности соответствующих им дуг, то есть

Комментарий репетитора по математике: Обратитте внимание на общую закономерность 4-го и 5-го свойства: хорды в произведениях не участвуют, а сами равенства (с частями и продолжениями хорд) при сохранении обозначений являются точной копией друг друга. Также можно подметить общую структуру равенств с дугами. Репетитору по математике стоит обратить на этих особенностях внимание ученика.

6) Свойства квадрата отрезка касательной

Теорема 1: Квадрат отрезка касательной равен произведению отрезков секущей, то есть


Теорема 2:угол между касательной и секущей равен полуразности соответствующих им дуг, то есть

7) Угол между касательной и секущей

Теорема:угол между касательной и секущей, проведенными из одной точки окружности, равен половине дуги, которую отсекает секущая (половине центрального угла, соответствующего данной дуге).

.

 





©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.