Здавалка
Главная | Обратная связь

Применение транзисторов



Вне зависимости от типа транзистора, принцип применения его един:

§ Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель, реле, лампа накаливания, вход другого, более мощного транзистора, электронной лампы и т. п. Именно источник питания даёт нужную мощность для «раскачки» нагрузки.

§ Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. То есть транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.

§ Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора, гораздо меньше напряжения и силы тока в выходной цепи. Таким образом, за счёт контролируемого управления источником питания достигается усиление сигнала.

§ Если мощности входного сигнала недостаточно для «раскачки» входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типамультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

§ Усилительных схемах. Работает, как правило, в усилительном режиме.[6][7] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[8][9] Транзисторы в таких усилителях работают в ключевом режиме.

Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

§ Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовыедиммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах.
Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.


Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 22нм[источник не указан 916 дней]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

В настоящее время микропроцессоры Intel собираются на трёхмерных транзисторах (3d транзисторы) именуемых Tri-Gate. Эта революционная технология позволила существенно улучшить существующие характеристики процессоров. Отметим, что переход к 3D-транзисторам при технологическом процессе 22 нм позволил повысить производительность процессоров на 30 % (по оценкам Intel) и снизить энергопотребление [источник не указан 229 дней]. Примечательно, что затраты на производство возрастут всего на 2—3 %, то есть в магазинах новые процессоры не будут значительно дороже старых[источник не указан 229 дней]. Суть технологии в том, что теперь сквозь затвор транзистора проходит особый High-K диэлектрик, который снижает токи утечки

[править]Сравнение с электронными лампами

Дополнительные сведения: Электронная лампа

До разработки транзисторов, вакуумные (электронные) лампы (или просто «лампы») были главными активными компонентами в электронном оборудовании.

[править]Преимущества

Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:

§ малые размеры и небольшой вес, что способствует развитию миниатюрных электронных устройств;

§ высокая степень автоматизации производственных процессов, что ведёт к снижению удельной стоимости;

§ низкие рабочие напряжения, что позволяет использовать транзисторы в небольших, с питанием от батареек, электронных устройств;

§ не требуется дополнительного времени на разогрев катода после включения устройства;

§ уменьшение рассеиваемой мощности, что способствует повышению энергоэффективности прибора в целом;

§ высокая надёжность и бо́льшая физическая прочность;

§ очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет;

§ возможность сочетания с дополнительными устройствами, что облегчает разработку дополнительных схем, что не представляется возможным с вакуумными лампами;

§ стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании в микрофонах и в аудио устройствах.

[править]Недостатки (ограничения)

§ Кремниевые транзисторы обычно не работают при напряжениях выше 1 000 вольт (вакуумные лапмпы могут работать с напряжениями около 3 000 вольт). В отличие от вакуумных ламп, были разработаны транзисторы, способные работать при напряжении в несколько десятков тысяч вольт;

§ высокая мощность, высокая частота, требующиеся для эфирного телевизионного вещания, лучше достигаются в вакуумных лампах в связи с большей подвижностью электронов в вакууме;

§ кремниевые транзисторы гораздо более уязвимы, чем вакуумные лампы к действию электромагнитного импульса, в том числе и одного из поражающих факторов высотного ядерного взрыва;

§ чувствительность к радиации и космических лучей (созданы специальные радиационно стойкие микросхемы для электронных устройств космических аппаратов);

§ вакуумные лампы создают искажения (так называемый ламповый звук), и некоторые люди считают их более приятными для восприятия на слух[10].

 

Тири́стор

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.