Здавалка
Главная | Обратная связь

Полупроводниковые диоды



Полупроводниковый прибор с одним р-n-переходом, имеющий два омических вывода, называют полупроводниковым диодом (рис.1.4). Одна из областей р-n-структуры (р+), называемая эмиттером, имеет большую концентрацию основных носителей заряда, чем другая область, называемая базой.

Статическая вольт-амперная характеристика (ВАХ) полупроводникового диода изображена на рис.1.4. Здесь же пунктиром показана теоретическая ВАХ электронно-дырочного перехода, определяемая соотношением

I=I0U/(mjт)-1), (3)

где Iо — обратный ток насыщения (ток экстракции, обусловленный неосновными носителями заряда; значение его очень мало); U — напряжение на p-n-переходе; jт = kT/e — температурный потенциал (k — постоянная Больцмана, Т — температура, е — заряд электрона); m — поправочный коэффициент: m = 1 для германиевых р-n-переходов и m = 2 для кремниевых p-n-переходов при малом токе).

Кремниевые диоды имеют существенно меньшее значение обратного тока по сравнению с германиевыми, вследствие более низкой концентрации неосновных носителей заряда. Обратная ветвь ВАХ у кремниевых диодов при данном масштабе практически сливается с осью абсцисс. Прямая ветвь ВАХ у кремниевых диодов расположена значительно правее, чем у германиевых.

Если через германиевый диод протекает постоянный ток, при изменении температуры падение напряжения на диоде изменяется приблизительно на 2,5 мВ/°С:

dU/dT= -2,5 В/°С. (1.5)

Для диодов в интегральном исполнении dU/dT составляет от —1,5 мВ/°С в нормальном режиме до —2 мВ/°С в режиме микротоков.

Максимально допустимое увеличение обратного тока диода определяет максимально допустимую температуру диода, которая составляет 80 – 100 °С для германиевых диодов и 150 – 200 °С для кремниевых.

Минимально допустимая температура диода лежит в пределах -(60 – 70)°С.

Дифференциальным сопротивлением диода называют отношение приращения напряжения на диоде к вызванному им приращению тока:

rДИФ = dU/dI (4)

Отсюда следует, что для p-n-перехода rДИФ @jт/I.

Пробой диода. При обратном напряжении диода свыше определенного критического значения наблюдается резкий рост обратного тока (рис. 1.5). Это явление называют пробоем диода. Пробой диода возникает либо в результате воздействия сильного электрического поля в р-n-переходе (рис.1.5, кривая 1 и 2). Такой пробой называется электрическим. Он может быть туннельным – кривая 2 или лавинным – кривая 1. Либо пробой возникает в результате разогрева p-n-перехода при протекании тока большого значения и при недостаточном теплоотводе, необеспечивающем устойчивость теплового режима перехода (рис. 1.5, кривая 3). Такой пробой называется тепловым пробоем. Электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода сохраняются. Тепловой пробой является необратимым. Нормальная работа диода в качестве элемента односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного значения Uо6р mах .

Значение допустимого обратного напряжения устанавливается с учетом исключения возможности электрического пробоя и составляет (0,5 - 0,8) Uпроб .

Емкости диода. Принято говорить об общей емкости диода Сд , измеренной между выводами диода при заданном напряжении смещения и частоте. Общая емкость диода равна сумме барьерной емкости С6 , диффузионной емкости Сдиф и емкости корпуса прибора Ск (рис.1.6).

Барьерная (зарядная) емкость обусловлена нескомпенсированным объемным зарядом ионов примесей, сосредоточенными по обе стороны от границы р-n-перехода.

Модельным аналогом барьерной емкости может служить емкость плоского конденсатора, обкладками которого являются р- и n-области, а диэлектриком служит р-n-переход, практически не имеющий подвижных зарядов. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины.

Диффузионная емкость. Изменение величины объемного заряда неравновесных электронов и дырок, вызванное изменением прямого тока, можно рассматривать как следствие наличия так называемой диффузионной емкости, которая включена параллельно барьерной емкости.

Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжении емкость р-n-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении - барьерной емкостью.

Схема замещения полупроводникового диода изображена на рис. 1.6. Здесь Сд – общая емкость диода, зависящая от режима; Rп – сопротивление перехода, значение которого определяют с помощью статической ВАХ диода (Rп = U/I); rб – распределенное электрическое сопротивление базы диода и выводов.

Иногда схему замещения дополняют емкостью между выводами диода СВ , емкостями Свх и Свых (показаны пунктиром) и индуктивностью выводов LВ .

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.