Здавалка
Главная | Обратная связь

Для материального баланса



 

Примечание:

1. По ходу дымовых газов граница «черного ящика» проводится сразу за последним газоходом КА, где и определяется температура выходящих из него дымовых газов.

2. Выход шлака и проваливающегося через колосниковую решетку топлива имеет место только при работе КА на твердом топливе. Также, в этом случае, дымовые газы содержат в себе некоторое количество золы и мелких частиц самого твердого топлива, выносимых потоком из топки.

 

Материальный и тепловой балансы составляются для КА, работающего в стационарном (установившемся) режиме. То есть для условий, когда КА работает и значения всех его режимных характеристик остаются неизменными (расход питательной воды, расход топлива, расход воздуха и т.д.).

При стационарном режиме материальный и тепловой балансы характеризуются массовыми расходами, кг / с, и расходом теплоты в единицу времени – мощностью (кДж / с = кВт), соответствующих потоков массы и энергии, входящих и выходящих из рабочего объема КА. Рабочий объем КА включает в себя объем топки и объем всех газоходов, за последним из которых определяется температура выходящих из КА дымовых газов.

Материальные балансы составляются отдельно для рабочего объема КА и отдельно для потоков воды и пара, находящихся во внутритрубном пространстве:

 

ВТ + GВ = GДГ + GШЛ + GПР, (9.1)

 

DПВ = DПП + DНП + DПР, (9.2)

 

где ВТ – расход топлива, кг / с;

GВ – расход воздуха, поступающего в КА, кг / с;

GДГ – расход дымовых газов, выходящих из КА (за последним газоходом), кг / с;

GШЛ – расход шлака, образовавшегося после сгорания топлива (выгружаемого из топки), кг / с;

GПР – расход топлива, просыпавшегося через колосниковую решетку, кг / с;

DПВ – расход питательной воды, поступающей в КА, кг / с;

DПР – расход котловой воды, выходящей из КА при продувке, кг / с;

DПП и DНП – расходы перегретого и насыщенного пара соответственно, вырабатываемые КА, кг / с.

Для составления теплового (энергетического) баланса котельный агрегат представляется в виде такого же «черного ящика», работающего в стационарном режиме, с указанием всех энергетических потоков, которые входят в него и выходят из него.

Энергетические потоки, входящие в КА, вносятся соответствующими материальными потоками: питательной водой, топливом и воздухом.

Аналогичным образом дело обстоит и с выходящими из КА энергетическими потоками, за одним исключением. К выходящим потокам дополнительно присоединяется поток энергии, теряемой рабочим объемом КА через обмуровку в окружающую среду из-за разности температур внутри и снаружи КА (за счет наружного охлаждения КА).

Изображенный на рис. 9.1 котельный агрегат является открытой термодинамической системой, которая по определению, может обмениваться с окружающей средой и веществом и энергией. Как и для любой термодинамической системы, для работающего КА выполняется I закон термодинамики. Рассмотрим работу КА в течение некоторого интервала времени, т.е. процесс перехода термодинамической системы – КА из состояния 1 (начальный момент времени) в состояние 2 (конечный момент времени). В соответствии с I законом термодинамики, для такого процесса в общем виде можно записать:

 

U2U1 = QL, кДж, (9.3)

 

где U1 и U2 – значения внутренней энергии КА в начале и конце процесса соответственно, кДж;

Q − алгебраическая сумма всех теплот, подведенных к КА и отведенных от него за указанный интервал времени, кДж;

L – механическая работа, совершенная в ходе рассматриваемого процесса 1 – 2 и переданная в окружающую среду, кДж.

Отметим, что внутри КА при его функционировании никакой механической работы не производится, т.е. L = 0. Так как КА работает в стационарном режиме, то его внутренняя энергия не меняется во времени, т.е. U2 = U1. Следовательно, из (9.3) получаем:

 

Q = 0, кДж. (9.4)

 

Очевидно, что Q это разность между подводимой и отводимой от КА энергии:

 

Q = QПОДQОТ, кДж, (9.5)

 

где QПОД и QОТ – суммарные энергии, которые за время рассматриваемого процесса подводятся к КА и отводятся от него соответственно.

Сопоставляя (9.4) и (9.5) получаем:

 

QПОД = QОТ, кДж. (9.6)

 

Уравнение (9.6) называется уравнением теплового баланса КА (вытекает из I закона термодинамики).

Разделим обе части равенства (9.6) на длительность интервала времени ∆τ, с, от начального состояния 1 до конечного состояния 2, и введем обозначения и .

Тогда вместо (9.6) получаем:

 

QВХ = QВЫХ, кДж / с (кВт), (9.7)

 

где QВХ и QВЫХ – входящие в КА и выходящие из него в единицу времени суммарные потоки энергии.

Подставим в (9.7) вместо QВХ и QВЫХ слагаемые, из которых они состоят. В результате получаем балансовое уравнение для потоков энергии в единицу времени:

 

QХТ + QФТ + QВОЗД + QПВ = QПП + QНП + QПР + QДГ +

 

+ QХНТ + QМНТ + QНО + QШЛ, кВт, (9.8)

 

где QХТ и QФТ – энергия, вносимая топливом, химическая и физическая соответственно, кВт;

QВОЗД – энергия, вносимая воздухом, кВт;

QПВ – энергия, вносимая питательной водой, кВт;

QПП – энергия, выносимая перегретым паром, кВт;

QНП – энергия, выносимая насыщенным паром, кВт;

QПР – энергия, выносимая котловой (продувочной) водой, кВт;

QДГ – энергия, выносимая дымовыми газами, включая частицы золы, кВт;

QХНТ – энергия, выносимая из-за химического недожога топлива (химическая энергия неполного сгорания), кВт;

QМНТ – энергия, выносимая из-за механической неполноты горения (недожог топлива в шлаке, провал топлива через колосниковую решетку и унос мелких частиц топлива газовым потоком), кВт;

QНО – энергия, выносимая из-за наружного охлаждения КА (за счет теплопередачи через ограждения рабочего объема), кВт;

QШЛ – энергия, выносимая со шлаком, кВт.

Представление КА в виде «черного ящика» для составления теплового баланса показано на рис. 9.2.

 

Рис. 9.2. Схема котельного агрегата в виде «черного ящика»







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.