Здавалка
Главная | Обратная связь

Квазинейтральность плазмы



 

Характерной особенностью плазмы является ее макроскопическая нейтральность, поддерживающаяся вследствие взаимной компенсации пространственного заряда положительных ионов и электронов. Однако такая компенсация имеет место лишь в среднем – в достаточно больших объемах и за достаточно большие интервалы времени. Поэтому говорят, что плазма – квазинейтральная среда. Размеры областей и промежутки времени, в пределах которых может нарушаться компенсация объемного заряда, называют пространственным и временным масштабами разделения зарядов.

Квазинейтральность плазмы предполагает выполнение в достаточно большом объеме и за достаточно длительный промежуток времени следующего условия:

, (1.1)

где и – усредненные концентрации ионов и электронов в плазме, z – кратность ионизации иона (z1).

Определим пространственный масштаб разделения зарядов. Представим, что в некотором объеме плазмы нейтральность нарушена. Для простоты будем считать, что это нарушение происходит в результате смещения плоского слоя электронов. При этом образуются слои отрицательного и положительного объемных зарядов (рис. 1.3, а). Электрическое поле между слоями эквивалентно полю плоского конденсатора. Напряженность поля Е. определяется поверхностной плотностью заряда на «обкладках» и в системе СГСЭ имеет вид:

 

, (1.2)

 

где е – заряд; nе – плотность электронов; х – смещение слоя.

Распределение напряженности поля и потенциала φ показано на рис. 1.1, б, в. Полная разность потенциалов φl равна

(1.3)

(l – толщина слоя). Очевидно, что нарушение нейтральности, вызванное смещением слоя электронов, может поддерживаться лишь в случае, если высота потенциального барьера поля объемного заряда меньше энергии хаотического движения электронов и ионов: (Те и Тi – соответственно, электронная и ионная температуры плазмы, которые в общем случае могут быть различными). В противном случае движение частиц под действием электрического поля быстро приводит к восстановлению нейтральности. Подставляя в это неравенство величину φl и полагая х ≈ l, получаем или

, (1.4)

где Т – меньшая из величин Те или Тi., k – постоянная Больцмана. Величина, стоящая, в правой части, определяет с точностью до численного коэффициента максимальный пространственный масштаб разделения зарядов в плазме. Эту величину, определяемую из равенства электростатической и тепловой энергий заряженных частиц, называют длиной Дебая. Точный расчет в случае электрон-протонной плазмы дает для длины Дебая выражение

(1.5)

На расстоянии порядка D электрическое поле отдельной частицы в плазме практически исчезает, вследствие «экранирования» частицами противоположного знака, поэтому D еще называют дебаевским радиусом экранирования.


Внешнее электрическое поле способно проникать в плазму тоже на глубину, не превышающую D. Экранировка этого поля обусловлена появлением в плазме компенсирующих полей пространственных зарядов (см. рис.1.4). Квазинейтральность может нарушаться вблизи границы плазмы за счет теплового движения на длину D.

Используя понятие о дебаевской длине, уточним определение плазмы как особого состояния вещества. Собрание свободно движущихся разноименно заряженных частиц, т. е. ионизованный газ, называется плазмой, если дебаевская длина мала по сравнению с объемом, занимаемым газом. Т.е. для плазмы с линейным размером L по определению должно выполняться соотношение L >> D и очевидно, что это условие и условие (1.1) взаимосвязаны.

Если общее число частиц в сфере радиуса D достаточно велико для эффективной экранировки, а потенциальная энергия их взаимодействия мала в сравнении с тепловой энергией, то в термодинамическом отношении такая плазма может рассматриваться как идеальный газ. Следовательно, условие идеальности плазмы (или ее разреженности) можно представить в виде

 

. (1.6)

 

Если увеличивать плотность плазмы, сохраняя при этом ее температуру, то согласно (1.5) величина D будет уменьшаться и условие (1.6) может уже не выполняться. В этом случае число частиц в сфере с радиусом D недостаточно для эффективной экранировки, и плазму уже нельзя считать идеальной. На каждую частицу начинает действовать поле остальных частиц, плазма становится, как говорят, коллективной, и теряет смысл понятие парных столкновений.

Определим временной масштаб разделения зарядов. Для этого обратимся снова к рис. 1.3 и рассмотрим движение электронов после нарушения нейтральности. В области нахождения электронного слоя на электроны действует сила притяжения со стороны ионов, равная (см.(1.2)). Уравнение движения электронов имеет вид

 

. (1.7)

 

Оно описывает гармонические колебания с частотой

 

. (1.8)

 

Нетрудно понять природу этих колебаний электронного слоя. Слой притягивается к ионному, проходит мимо него по инерции, снова притягивается и т. д. Колебания пространственного заряда при нарушении квазинейтральности были впервые обнаружены Ленгмюром. Их называют плазменными, или ленгмюровскими, колебаниями. Частоту (1.8) соответственно называют электронной плазменной, или электронной ленгмюровской, частотой.

Аналогично ленгмюровские колебания ионов в плазме характеризуются ионной плазменной частотой:

 

(1.9)

 

Плазменной частотой принято называть величину

 

(1.10)

 

Поскольку , то , и линейная частота плазмы определяется из выражения

 

[Гц], (1.11)

 

где ne измеряется в см-3.

Плазменные колебания определяют механизм восстановления квазинейтральности. Очевидно, что в среднем, за много периодов колебаний, плазму можно считать нейтральной. Поэтому временной масштаб разделения зарядов в плазме определяется величиной

 

. (1.12)

 

Его связь с пространственным масштабом разделения зарядов (1.5) очень проста:

 

, (1.13)

 

где υ – средняя тепловая скорость электрона.

Чем выше плотность плазмы, тем, согласно (1.5) и (1.12). меньше масштабы декомпенсации зарядов в пространстве и во времени. Внутри области, занятой плотной и холодной плазмой, нарушения квазинейтральности могут происходить только в пределах достаточно малых объемов. В редкой и горячей плазме дебаевская длина может оказаться значительно больше размеров области, занятой плазмой. В этом случае реализуется независимое движение электронов и ионов и отсутствует механизм для автоматического выравнивания концентраций зарядов противоположных знаков.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.