Здавалка
Главная | Обратная связь

Геотермальная энергия



Геотермальная энергия обязана своим происхождением горячей магме, которая проникает из недр земли и подходит близко к поверхности. Источники глубинной теплоты расположены во многих частях земного шара, как правило, вблизи районов геологической активности. Геотермальные месторождения можно подразделить на следующие виды:

1) гидротермальные системы (на глубине до 3 км). Они могут быть: с преобладанием сухого пара, с преобладанием горячей воды;

2) системы аномально высокого давления (на глубине до 10 км);

3) сухие горячие горные породы (на глубине до 10 км). Наиболее эффективны и освоены такие геотермальные месторождения, в которых горячий сухой пар выходит на поверхность земли. В настоящее время широкое применение находят месторождения, в которых преобладает горячая вода.

Магма нагревает вышележащую пористую породу за счет конвекции. Пористая (водоносная) порода, если она сверху покрыта плотной водонепроницаемой породой, и является источником геотермальной энергии. Если в этих местах возникают трещины в земной коре, то нагретая вода вытесняется вверх. По мере ее поднятия к поверхности земли, давление воды падает, и она превращается в пар. Если начальная температура воды и ее давление достаточно высоки, то в пар превращается вся вода. Это месторождение сухого пара. Однако в большинстве районов мира извлекаемые геотермальные флюиды представляют собой смесь пара и горячей воды (в сущности, горячий рассол, так как геотермальные флюиды содержат большое количество растворенных химических веществ).

Геотермальные системы аномально высокого давления в настоящее время активно изучаются. Для систем подобного типа характерно то, что горячая вода "заперта" в обширных, глубоко залегающих осадочных бассейнах: температура воды обычно не достигает и 200°С, однако давление внутри резервуара колеблется от 500 до 900 МПа.

Чтобы приступить к массовому освоению этого вида энергоресурсов, необходимо сначала решить несколько технологических и экологических проблем. Большая часть затрат на освоение геотермальной энергии связана с бурением скважин диаметром до 60 см. Высокое содержание солей в геотермальной воде и паре приводит к тому, что через несколько лет работы происходит закупорка этих скважин и необходимо их новое бурение. По большинству скважин поступает не пар, а горячая вода, что уменьшает КПД выработки электроэнергии. Отбор теплоты из геотермального источника происходит обычно быстрее, чем ее возмещение за счет естественного процесса. В результате со временем температура пара или горячей воды начинает снижаться, уменьшается также их поступление на поверхность. Это означает, что наступает исчерпание источника геотермальной энергии.

В РФ также ведутся работы по использованию геотермальной энергии. Источники этой энергии у нас имеются на Кавказе, на Камчатке, на острове Кунашир, на Сахалине и в ряде мест Забайкалья. Первая ГеоТЭС в РФ была построена на Камчатке в 1967 г. мощностью 5 МВт. Начато изготовление комплектных ГеоТЭС мощностью 2,0; 2,5 и 20 МВт для Камчатской и Сахалинской областей.

 

Солнечная энергия

Рассмотренные выше геофизические источники энергии могут обеспечить в последующие десятилетия лишь незначительную часть потребностей в энергии и оказаться неприемлемыми для освоения в крупных масштабах. Как отмечалось, органическое топливо является невозобновляемым ресурсом, и его использование связано с нанесением значительного ущерба окружающей среде.

Необходимо располагать неисчерпаемым дешевым и возобновляемым источником энергии, не загрязняющим окружающую среду. Таким источником является Солнце. Поток солнечного излучения составляет около 3,8·1026 Вт и представлен всем спектром электромагнитных волн. Однако основная его масса приходится на ультрафиолетовую, видимую и инфракрасную части спектра. Энергетическая освещенность земной атмосферы составляет примерно 1,4 кВт/м2, а поверхности Земли - около 1 Вт/м2. Пока не существует экономичного способа преобразования этой энергии в электрическую, но работы в этом направлении ведутся.

Наиболее подходящим направлением преобразования солнечной энергии в полезную работу является ее использование, для замещения органического топлива при получении теплоты в парогенераторе. Однако, как и при применении органического топлива, КПД преобразования ограничивается диапазоном температуры рабочего тела, в данном случае пара. Поскольку создание и эксплуатация очень крупных коллекторных систем для концентрации солнечных лучей является делом сложным, в настоящее время в таких системах удается получить пар с относительно небольшой температурой. Как следствие, КПД преобразования солнечной энергии в электроэнергию в таких установках может составлять около 10%. Чтобы получить 1 ГВт электрической мощности, потребовалось бы 10 ГВт мощности солнечного излучения. В создании системы таких масштабов и связанного с ней другого оборудования имеются определенные технические трудности. Стоимость электроэнергии, производимой солнечной электростанцией, в 10 раз выше, чем электроэнергии, вырабатываемой тепловой станцией на органическом топливе.

Следует рассмотреть еще два "узких" места крупных солнечных электростанций - аккумулирование энергии и ее передача. Для обеспечения круглосуточного электроснабжения от солнечной электростанции требуется обеспечить аккумулирование энергии. Одним из вариантов решения этой проблемы является создание аккумулятора теплоты в химически связанном виде. Если бы был найден материал с высокой теплотой плавления и низкой точкой плавления, то избыточная теплота, вырабатываемая в дневное время, могла бы аккумулироваться, а в ночное время - использоваться для покрытия нагрузки. Другим вариантом является аккумулирование электроэнергии, например, с помощью гидроаккумулирующих электростанций (ГАЭС). Обе системы аккумулирования энергии имеют недостатки - высокую стоимость и низкий КПД.

Рассмотренные выше системы преобразования солнечной энергии могут быть названы непрямыми системами преобразования, так как энергия солнечного излучения преобразуется в электрическую энергию в несколько стадий. На этих стадиях неизбежны потери энергии.

Существуют способы непосредственного преобразования солнечной энергии в электрическую энергию без использования промежуточных стадий. Например, фотоэлектрическим преобразованием. В настоящее время появились два направления крупномасштабного использования принципа фотоэлектрического преобразования. Одно из них предусматривает использование искусственных спутников Земли, выведенных на геосинхронные орбиты и оборудованных солнечными панелями из фотоэлементов. Вырабатываемая ими электроэнергия преобразуется в электромагнитные волны в микроволновом диапазоне частот и направляется на Землю. Приемная антенна площадью около 3 км2 могла бы обеспечить прием мощности, примерно 3 ГВт при интенсивности излучения 1 кВт/м2. О практической реализации этого направления в ближайшие годы говорить рано, поскольку созданные к настоящему времени преобразовательные устройства обладают очень малым КПД, а их масса и стоимость слишком велики.

Второе направление предусматривает монтаж сборных панелей солнечных фотоэлектрических элементов в малонаселенных пустынных районах Земли.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.