Здавалка
Главная | Обратная связь

Криптографические методы информационной безопасности



Элементы криптографии

В качестве основных механизмов информационной безопасности используются:

1) алгоритмы симметричного шифрования – алгоритмы шифрования, в которых для шифрования и дешифрования используется один и тот же ключ или ключ дешифрования легко может быть получен из ключа шифрования;

2) алгоритмы асимметричного шифрования – алгоритмы шифрования, в которых для шифрования и дешифрования используются два разных ключа, называемые открытым и закрытым ключами, причем, зная один из ключей, вычислить другой невозможно;

3) хэш-функции – функции, входным значением которых является сообщение произвольной длины, а выходным значением – сообщение фиксированной длины (хэш-функции обладают рядом свойств, которые позволяют с высокой долей вероятности определять изменение входного сообщения).

Здесь под шифрованием и дешифрированием понимаются разновидности процессов кодирования и декодирования информации.

Указанные средства основаны на применении криптографических методов. Разработка и исследование таких методов составляет предмет специальной науки – криптографии.

Криптография (тайнопись) – это раздел математики, в котором изучаются и разрабатываются системы изменения письма с целью сделать его непонятным для непосвященных лиц. Теоретические основы классической криптографии впервые были изложены Клодом Шенноном в конце 1940-х годов.

Методы криптографии начали развиваться еще в глубокой древности. Известно, что еще в V веке до нашей эры тайнопись использовалась в Древней Греции. Очень распространена была простейшая (для настоящего времени) система шифрования – это замена каждого знака письма на другой знак по выбранному правилу. Юлий Цезарь, например, заменял в своих секретных письмах первую букву алфавита на четвертую, вторую – на пятую, последнюю – на третью и т.п., т.е. A на D, B на E, Z на C и т.п. Его наследник Октавиан Август заменял каждую непоследнюю букву алфавита на следующую, а последнюю на первую. Подобные шифры, называемые простой заменой или подстановкой, описаны в рассказах «Пляшущие человечки» А. К. Дойла, «Золотой жук» Э.По и других детективных произведениях.

Шифры простой замены легко поддаются расшифровке при знании исходного языка сообщения, так как каждый письменный язык характеризуется частотой встречаемости своих знаков. Например, в английском языке чаще всего встречается буква E, а в русском – О. Таким образом, в шифрованном подстановкой сообщения на русском языке самому частому знаку будет с большой вероятностью соответствовать буква О. При этом вероятность будет расти с ростом длины сообщения.

Усовершенствованные шифры-подстановки используют возможность заменять символ исходного сообщения на любой символ из заданного для него множества символов, что позволяет выровнять частоты встречаемости различных знаков шифра, но подобные шифры удлиняют сообщение и замедляют скорость обмена информацией.

В шифрах-перестановках знаки сообщения специальным образом переставляются между собой, например, записывая сообщение в строки заданной длины и беря затем последовательность слов в столбцах в качестве шифра. Сообщение «ТЕОРИЯИНФОРМАЦИИ», используя строки длины 4, будет в шифрованном таким методом виде выглядеть как "ТИФАЕЯОЦОИРИРНМИ", потому что при шифровании использовался следующий прямоугольник:

 

Т Е О Р
И Я И Н
Ф О Р М
А Ц И И

 

Шифры-перестановки в общем случае практически не поддаются дешифровке. Для их дешифровки необходимо знать дополнительную информацию. Крупный недостаток подобных шифров в том, что если удастся каким-то образом расшифровать хотя бы одно сообщение, то в дальнейшем можно расшифровать и любое другое. Модификацией шифров-перестановок являются шифры-перестановки со словом-ключом, которое определяет порядок взятия слов-столбцов.

Системы с ключевым словом или просто ключом, известные с XVI века, широко применяются до сих пор. Их особенностью является два уровня секретности. Первый уровень – это собственно способ составления кода, который постоянно известен лицам, использующим данный шифр. Второй уровень – это ключ, который посылается отдельно от основного сообщения по особо защищенным каналам и без которого расшифровка основного сообщения невозможна.

Наиболее простой способ использования ключа хорошего шифра следующий: под символами сообщения записывается раз за разом ключ, затем номера соответствующих знаков сообщения и ключа складываются. Если полученная сумма больше общего числа знаков, то от нее отнимается это общее число знаков. Полученные числа будут номерами символов кода. С ростом длины ключа трудоемкость дешифровки подобного шифра стремительно растет. Например, рассмотренное ранее сообщение с ключом "КИБЕРНЕТИКА" в шифрованном виде будет выглядеть как "ЮОРЦЪНОБЮЪСШЙШОЪ". Процесс шифровки описывается схемой:

 

Т Е О Р И Я И Н Ф О Р М А Ц И И
К И Б Е Р Н Е Т И К А К И Б Е Р
Ю О Р Ц Ъ Н О Б Ю Ъ С Ш Й Ш О Ъ

 

Если в качестве ключа использовать случайную последовательность, то получится нераскрываемый шифр. Проблема такого шифра – это способ передачи ключа.

В информационных сетях использование традиционных систем шифрования с ключом затрудненно необходимостью иметь специальный особо защищенный способ для передачи ключа. В 1976 году У.Диффи и М.Хеллман – инженеры-электрики из Станфордского университета, а также студент Калифорнийского университета Р.Меркль, предложили новый принцип построения криптосистем, не требующий передачи ключа принимающему сообщение и сохранения в тайне метода шифрования.

Модель шифрования

Шифрование информации – это основной криптографический метод защиты информации, обеспечивающий ее конфиденциальность. При шифровании и расшифровке (дешифрировании) информации выполняется преобразование исходных (открытых) данных в зашифрованные и наоборот. Шифрование данных можно представить в виде следующих формул:

C = Ek1(M),

M’ = Dk2(C),

где M – открытая информация (открытый текст), C – полученный в результате зашифровывания шифротекст (криптограмма), E – функция зашифровывания, выполняющая криптографические преобразования над исходным текстом, k1 – параметр функции зашифрования, называемый ключом зашифровывания, M’ – информация, полученная в результате расшифровывания, k2 – параметр для расшифровывания информации, D – функция расшифровывания, выполняющая обратные относительно зашифровывания криптографические преобразования над шифротекстом.

В стандарте ГОСТ 28147-89 понятие «ключ» определено следующим образом: «Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований». Другими словами, ключ является уникальным элементом, с помощью которого можно варьировать результат работы алгоритма шифрования: один и тот же открытый текст при использовании различных ключей будет зашифрован по-разному.

Для того чтобы результат последовательного выполнения операций зашифровывания и расшифровывания совпал с исходным сообщением, необходимо выполнение двух условий:

- функция D должна соответствовать функции E,

- ключ k2 должен соответствовать ключу k1.

При отсутствии верного ключа k2 получить исходное сообщение M’ = M невозможно, если для зашифровывания использовался криптографически стойкий алгоритм шифрования. Криптостойкость является количественной характеристикой алгоритма шифрования, определяемой требуемыми ресурсами для его вскрытия. Ресурсами являются:

- количество информации;

- время;

- память.

Совокупность этих трех величин характеризует конкретную атаку на конкретный алгоритм шифрования. А лучшая (с минимальным набором ресурсов) из возможных атак на алгоритм характеризует его криптостойкость. Кроме того, понятие криптостойкого алгоритма может быть определено следующим образом:

- алгоритм является криптографически стойким, если не существует каких-либо методов его вскрытия, кроме перебора всех возможных вариантов, и

- при этом размер ключа алгоритма является достаточно большим для того, чтобы перебор вариантов стал невозможным при текущем уровне вычислительной техники.

Алгоритмы шифрования можно разделить на две категории:

1) алгоритмы симметричного шифрования, в которых k2 = k1 = k;

2) алгоритмы асимметричного шифрования, в которых ключ зашифровывания k1 вычисляется из ключа k2 таким образом, что обратное вычисление невозможно, например, по формуле

k1 = ak2 mod p,

где a и p – параметры алгоритма.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.