Здавалка
Главная | Обратная связь

Виды современной связи



Классификация каналов связи

Каналы связи являются основным звеном любой системы передачи информации. Классификацию каналов связи можно осу­ществить по различным признакам (табл. 1).

Таблица 1 Классификация каналов связи

Признак классификации Характеристики каналов связи
Физическая природа передаваемого сигнала Оптические и электрические, которые в свою очередь, могут быть проводными (электрические провода, кабели, световоды) и беспроводными, использующие электромагнитные волны, распространяющиеся в эфире (радиоканалы, инфракрасные каналы и т. д.).
Форма представления пе­редаваемой информации Аналоговые представляют информацию в непрерывной форме в виде непрерывного сигнала какой-либо физической природы. Цифровые представляют информацию в цифровой (прерывной — дискретной, импульсной) форме сигналов какой-либо физической природы.
Время существования Коммутируемые — временные, создаются только на время передачи информации. По окончании передачи информации и разъединении уничтожаются. Некоммутируемые — создаются на длительное время с определенными постоянными характеристиками. Их еще называют выделенными.
Скорость передачи информации Среднескоростные (от 2400—9600 бит/с) используются в телефонных (аналоговых) каналах связи, на новых станциях 14—56 кбит/с. Среднескоростным каналам используются проводные линии связи(группы параллельных или скрученных проводов витая пара). Высокоскоростные (свыше 56 кбит/с) называют широкополосными. Для передачи информации используются специальные кабели: экранированные и неэкранированные, оптоволоконные, радиоканалы.

 

Виды современной связи

Наиболее распространенными видами современной связи являются:

- Телефонная связь

- Компьютерная телефония

- Радиотелефонная связь

- Системы сотовой радиотелефонной связи

- Системы стандарта Wi-Fi

 

 

Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.

 

Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера. Сообщениями называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.

 

Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения.

В глобальных сетях для передачи информации применяются следующие виды коммутации:

коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;

коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);

коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации)

 

Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей.

 

При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата. Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения. К достоинствам можно отнести - уменьшение стоимости передачи данных. Недостатком данного способа является низкая скорость передачи информации, невозможность ведения диалога между пользователями.

Пакетная коммутация подразумевает обмен небольшими пакетами (часть сообщения) фиксированной структуры, которые не дают возможности образования очередей в узлах коммутации. Достоинства: быстрое соединение, надежность, эффективность использования сети.

Стандартизация функций информационного обмена между вычислительными системами имеет решающее значение для создания компьютерных сетей, интеграции предоставляемых ими ресурсов и услуг.

В настоящее время сформирована обширная система стандартов, в состав которой входят следующие виды документов.

1) Эталонная модель OSI RM (X.200).

2) Стандарты методологии и средств тестирования конформности (X.290).

3) Стандарты протоколов и сервисов сетевых технологий.

4) Стандарты абстрактных методов тестирования сетевых протоколов.

5) Международные стандартизованные профили сетевых технологий.

6) Стандарты общесистемных функций (управления, безопасности, качества сервисов).

7) Вспомогательные документы (руководства, словари понятий, технические отчеты) и др.

 

Стандартизация взаимосвязи систем охватывает три уровня описания средств информационного обмена.

На первом уровне, который можно назвать концептуальным, специфицируется эталонная модель взаимосвязи открытых систем OSI RM (Open Systems Interconnection Reference Model).

На втором уровне определяются спецификации сервиса (услуг), предоставляемого отдельными компонентами архитектуры OSI RM.

Наиболее детальным уровнем описания взаимосвязи открытых систем является спецификация протоколов информационного обмена между функциональными элементами эталонной модели, определяющими правила и форматы взаимодействия элементов.

Основные понятия:

Активация (экземпляр, вызов) прикладного процесса (application-process-invocation): конкретное использование (полностью или частично) функциональных возможностей данного прикладного процесса для поддержки конкретного случая процесса обработки информации.

 

В основу построения функциональной архитектуры OSI RM положен принцип иерархической декомпозиции. Т.е. все функции взаимосвязи разбиты на отдельные уровни, таким образом, чтобы сгруппировать в рамках одного уровня логически тесно связанные функции и минимизировать, тем самым, межуровневые взаимодействия.

В результате систематического проектирования архитектуры для среды взаимосвязи открытых систем была определена семиуровневая модель архитектуры OSI RM, включающая следующие уровни:

 

Прикладной (Application - A) - уровень 7;

Представительный (Presentation - P) - уровень 6;

Сеансовый (Session - S) - уровень 5;

Транспортный (Transport - T) - уровень 4;

Сетевой (Network - N) - уровень 3;

Канальный или звена данных (Data Link - DL) - уровень 2;

Физический (Physical - Ph) - уровень 1.

 

18.

В зависимости от способа использования телефонную связь можно разделить на два вида:

- общего пользования (городская, междугородная, международная);

- офисную (внутренняя) связь, используемую в пределах одной организации.

 

Основными компонентами телефонной связи являются телефонная сеть и абонентские терминалы. Телефонная сеть состоит из автоматических телефонных станций (АТС), соединенных между собой каналами связи. Каждая АТС коммутирует, как правило, до 10 тыс. абонентов. Абонентские терминалы подключают к сети по абонентской линии. Как правило, это пара медных проводов. Каждая абонентская линия имеет свой персональный номер. АТС соединяются между собой по соединительным линиям и также имеют свой номер, как правило, совпадающий с первыми тремя цифрами абонентского номера. Например, если московский абонент имеет номер телефона 187-27-59, то это значит, что он подключен к АТС с номером 187, а 27-59 — это персональный номер абонента. Если к АТС подключены более 10 тыс. абонентов, то тогда данная АТС разделяется на несколько логических подстанций, имеющих свой персональный номер.

 

В общем виде телефонная сеть представляет иерархическую структуру, состоящую из следующих уровней: международного, междугородного и уровня конкретного региона (рис. 1)

 

 

Рис. 1.Схема международной телефонной сети

 

Офисная связь реализуется на базе специальных офисных АТС. Их применение на предприятиях туриндустрии, особенно в гостиничных комплексах, продиктовано необходимостью обеспечения сотрудников фирмы и гостей городским телефоном, а также экономией средств на разговоры. Офисные АТС позволяют при наличии ограниченного числа городских телефонов увеличивать количество дополнительных внутренних телефонов, обеспечивая тем самым оперативность работы учреждения. Офисная АТС является связующим звеном между городскими абонентскими линиями и линиями внутренних абонентов, т.е. выполняет функции региональной АТС. Причем количество внутренних абонентских линий зависит от различных параметров, таких, как количество городских абонентских линий, подключенных к данной АТС, интенсивности разговоров, финансовых возможностей фирмы и т. п.

На рынке средств связи существует множество различных офисных АТС — от самых маленьких, которые устанавливаются в небольших офисах и даже в квартирах, до больших станций. Если в качестве абонента выступает офисная мини-АТС, то можно еще добавить внутренний номер абонента.

 

Офисные АТС станции используются на крупных предприятиях и в гостиницах. Основными достоинствами офисных АТС является то, что они, во-первых, осуществляют автоматическое подключение внутренних абонентов и, во-вторых, телефонная связь внутри фирмы осуществляется практически бесплатно. Кроме этого они выполняют множество полезных вспомогательных функций, к которым относятся:

Но одной из важнейших функций офисной АТС является возможность подключения ее к компьютеру. Это позволяет вести автоматический учет и регистрацию всех телефонных переговоров, учитывать время и тариф при каждом телефонном разговоре, автоматически устанавливать скидки (наценки) на телефонные разговоры, для гостиниц автоматически выписывать счета гостям за каждый телефонный разговор либо при выписке. Для решения этих задач разрабатываются специальные программные продукты — автоматизированные системы учета и тарификации телефонных переговоров. Система принимает данные о звонках от мини-АТС, сохраняет их в базе данных и тарифицирует в режиме реального времени.

 

Одним из основных элементов телефонной связи является телефонный аппарат. Телефонные аппараты различаются как по конструктивному исполнению (имеют различную форму), так и по своим сервисным возможностям (выполняют различные функции). Современные телефонные системы используют два способа кодирования набираемого номера: импульсный и тональный.

 

Импульсный (Pulse) способ кодирования применяется в устаревших аппаратах с вращающимся диском набора номера. При наборе цифр в линию связи подаются импульсы, число которых соответствует набранной цифре.

 

При тональном (Tone) способе кодирования информации посылается непрерывный сигнал, состоящий из комбинации двух частот, при помощи которых и осуществляется кодирование передаваемого номера. Тональный способ используется в телефонных аппаратах, имеющих кнопочное устройство набора номера. Практически все существующие АТС допускают импульсное кодирование номера, тональные же системы кодирования используются лишь на сравнительно новых АТС

 

 

DECT (англ. Digital Enhanced Cordless Telecommunication) — технология беспроводной связи на частотах 1880—1900 МГц с модуляцией GMSK (BT = 0,5), используется в современных радиотелефонах. Стандарт DECT не только получил широчайшее распространение в Европе, но и является наиболее популярным стандартом беспроводного телефона в мире, благодаря простоте развёртывания DECT-сетей, широкому спектру пользовательских услуг и высокому качеству связи. По оценкам 1999 года DECT принят более чем в 100 странах, а число абонентских устройств DECT в мире приближается к 50 миллионам. В Европе DECT полностью вытесняет беспроводные телефоны стандартов CT2, CT3; на других континентах DECT успешно конкурирует с американским стандартом PACS и японским PHS. Стандарт DECT в России для домашнего пользования не требует лицензирования (получения частотного решения ГКРЧ, разрешения Роскомнадзора

 

-Диапазон радиочастот, используемых для приёма/передачи — 1880—1900 МГц в Европе, 1920—1930 МГц в США.

-Рабочий диапазон (20 МГц) разделён на 10 радиоканалов, каждый по 1728 КГц.

-Максимальная мощность станции и телефонных трубок в соответствии со стандартом — 10 мВт.

 

DECT относится к системам пакетной радиосвязи с частотно-временным разделением каналов (информация передаётся по радиоканалу в виде пакетов, организованных в кадры) и основана на технологиях:

-TDMA — Time division multiple access (множественный доступ с временным мультиплексированием)

-FDMA — Frequency division multiple access (множественный доступ с частотным мультиплексированием)

-TDD — Time division duplex (дуплексный канал с временным разделением)

 

Основные достоинства DECT:

хорошая (в сравнении с аналоговыми системами) помехоустойчивость канала связи, благодаря цифровой передаче сигнала; вследствие этого — отсутствие множества помех во время разговора, которые присутствовали в аналоговых системах;

хорошая интеграция с системами стационарной корпоративной телефонии.

меньшее по сравнению с мобильными телефонами облучение абонента — уровень сигнала радиотелефона в соответствии со стандартом составляет 10 мВт (из-за многократно меньшей мощности передатчика (как трубки, так и базы).

 

Основные недостатки DECT:

относительно небольшая дальность связи (из-за ограничения мощности самим стандартом);

невысокая (относительно WiFi) скорость передачи данных

 

 

Принцип работы оптико-волокна относительно прост: вместо обычного провода используются оптические волокна, по которым распространяется лазерное излучение, соответствующим образом промодулированное. Этот вид связи не имеет таких недостатков, как невозможность идеальной развязки между входом и выходом, что становится порой принципиальной проблемой, а также нет никакой чувствительности к всевозможным внешним наводкам.

 

Оптическое волокно представляет собой тонкую нить из прозрачного диэлектрика. Подобным диэлектриком может служить, например, кварцевое стекло; диаметр может изменяться в диапазоне от 1 мкм до 100 мкм. Подобное волокно является практически идеальным световодом: излучение лазера почти полностью «заперто» в нем.

В качестве основных источников света в аппаратуре волоконных ОСС используются полупроводниковые инжекционные гетеролазеры.

 

Используемые лазеры обеспечивают мощность излучения до 40 мВт при КПД до 20% и допускают модуляцию по току накачки в полосе примерно до 1 ГГц. Особенностью передатчиков волоконных ОСС является необходимость стабилизации температуры лазера и тока накачки.

 

На линиях малой протяженности и небольшой пропускной способности иногда применяются светоизлучающие диоды.

В качестве приемных устройств используются приемники прямого детектирования, в которых фотодетекторами служат pin-фотодиоды либо лавинные фотодиоды.

 

Среди важнейшей характеристик стоит выделить величину потерь излучения в теле волокна, отнесенную к единице длины волокна. Потери имеют размерность децибел на километр (дБ/км). К важнейшим достоинствам этой технологии связи относятся:

• высокая защищенность по отношению к внешним электромагнитным помехам;

• большая пропускная способность при малом поперечном сечении волоконного кабеля и малой погонной массе;

• компактность;

• малое энергопотребление оборудования.

 

 

Характеристики волоконных световодов. Важнейшими характеристиками С., предназначенных для подобных применений, являются оптич. потери, дисперсия групповой скорости, оптич. нелинейность и механич. прочность. В 70-х гг. 20 в. созданы волоконные С. на основе кварцевого стекла с затуханием сигнала ~1 дБ/км в ближней ИК-области спектра. Типичный спектр оптических потерь в таких С. представлен на рис. 2, а. Минимально возможные потери составляют 0,16 дБ/км на волне 1,55 мкм. Материалом для таких С. служит кварцевое стекло; различия показателей преломления сердцевины и оболочки достигают легированием стекла (напр., фтором, германием, фосфором).

 

Др. важной характеристикой одномодовых волоконных С., широко применяемых в системах оптич. связи, является дисперсия групповой скорости. На рис. 2, б представлен спектр дисперсии С. на основе кварцевого стекла. Видно, что кривая дисперсии проходит через 0 вблизи мкм. Это означает, что именно в этой спектральной области информац. полоса пропускания одномодовых волоконных С. на основе кварцевого стекла максимальна и составляет 1011 Гц*км.

 

Рис. 2. Спектр оптических потерь (а) и дисперсии групповой скорости (произвольные единицы, б).

 

 

Особенности и классификация систем подвижной радиосвязи (СПРС).

 

СПРС предназначены для связи между движущимся абонентом и абонентом ТФОП или между двумя движущимися абонентами.

Принципы организации СПРС:

- полносвязная система;

- «принцип звезды».

 

i j i ТФОП

ЦС

 

 

k l j

 

i – l j – k k

i – ЦС – j i – ЦС - k

Полносвязная система Принцип звезды

 

По способу использования каналов связи различают системы:

- с жестко закрепленными за группой абонентов каналами;

- с полнодоступным пучком каналов.

 

 

a d a g

b e b h

c f c i

d … j

g j e k

h k f l

i l

 

Жесткое закрепление Пучок каналов – транкинговый принцип

 

При одинаковых условиях (Ротк=10%, tзан.канала=2,5 мин/час) в первом случае обслуживается 60 – 70 абонентов, во втором – 420 абонентов, однако, необходимо определять метод доступа.

Транкинговый принцип положен в основу всех коммерческих систем радиосвязи.

 

Наиболее распространенным средством подвижной связи являются радиально-зоновые (транкинговые) системы и сотовые системы.

Транкинговая система представляет собой типичную «звезду».

 

33.

набор стандартов связи, для коммуникации в беспроводной локальной сетевой зоне частотных диапазонов 0.9, 2.4, 3.6, и 5 ГГц.

 

Пользователям более известен по названию Wi-Fi, фактически являющемуся брендом, предложенным и продвигаемым организацией Wi-Fi Alliance. Получил широкое распространение благодаря развитию в мобильных электронно-вычислительных устройствах: КПК и ноутбуках.

 

Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости не более 1 Мбит/с и опционально на скорости 2 Мбит/с. Один из первых высокоскоростных стандартов беспроводных сетей — IEEE 802.11a — определяет скорость передачи уже до 54 Мбит/с. Рабочий диапазон стандарта 5 ГГц.

 

Вопреки своему названию, принятый в 1999 году стандарт IEEE 802.11b не является продолжением стандарта 802.11a, поскольку в них используются различные технологии: DSSS (точнее, его улучшенная версия HR-DSSS) в 802.11b против OFDM в 802.11a. Стандарт предусматривает использование нелицензируемого диапазона частот 2,4 ГГц. Скорость передачи до 11 Мбит/с.

 

Продукты стандарта IEEE 802.11b, поставляемые разными изготовителями, тестируются на совместимость и сертифицируются организацией Wireless Ethernet Compatibility Alliance (WECA), которая в настоящее время больше известна под названием Wi-Fi Alliance. Совместимые беспроводные продукты, прошедшие испытания по программе «Альянса Wi-Fi», могут быть маркированы знаком Wi-Fi.

 

Долгое время IEEE 802.11b был распространённым стандартом, на базе которого было построено большинство беспроводных локальных сетей. Сейчас его место занял стандарт IEEE 802.11g, постепенно вытесняемый высокоскоростным IEEE 802.11n.

 

Проект стандарта IEEE 802.11g был утверждён в октябре 2002 г. Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость соединения до 54 Мбит/с и превосходя, таким образом, стандарт IEEE 802.11b, который обеспечивает скорость соединения до 11 Мбит/с. Кроме того, он гарантирует обратную совместимость со стандартом 802.11b. Обратная совместимость стандарта IEEE 802.11g может быть реализована в режиме модуляции DSSS, и тогда скорость соединения будет ограничена одиннадцатью мегабитами в секунду либо в режиме модуляции OFDM, при котором скорость может достигать 54 Мбит/с. Таким образом, данный стандарт является наиболее приемлемым при построении беспроводных сетей.

 

 

Список стандартов

 

При описании стандарта, в скобках указан год его принятия.

802.11 — Изначальный 1 Мбит/с и 2 Мбит/c, 2,4 ГГц и ИК стандарт (1997)

802.11a — 54 Мбит/c, 5 ГГц стандарт (1999, выход продуктов в 2001)

802.11b — Улучшения к 802.11 для поддержки 5,5 и 11 Мбит/с (1999)

802.11c — Процедуры операций с мостами; включен в стандарт IEEE 802.1D (2001)

802.11d — Интернациональные роуминговые расширения (2001)

802.11e — Улучшения: QoS, включение packet bursting (2005)

802.11F — Inter-Access Point Protocol (2003)

802.11g — 54 Мбит/c, 2,4 ГГц стандарт (обратная совместимость с b) (2003)

802.11h — Распределенный по спектру 802.11a (5 GHz) для совместимости в Европе (2004)

802.11i — Улучшенная безопасность (2004)

802.11j — Расширения для Японии (2004)

802.11k — Улучшения измерения радио ресурсов

802.11l — Зарезервирован

802.11m — Поддержание эталона; обрезки

802.11n — Увеличение скорости передачи данных (600 Мбит/c). 2,4-2,5 или 5 ГГц. Обратная совместимость с 802.11a/b/g . Особенно распространён на рынке в США в устройствах D-Link, Cisco и Apple. (сентябрь 2009)

802.11o — Зарезервирован

802.11p — WAVE — Wireless Access for the Vehicular Environment (Беспроводной Доступ для Транспортной Среды, такой как машины скорой помощи или пассажирский транспорт)

802.11q — Зарезервирован, иногда его путают с 802.1Q

802.11r — Быстрый роуминг

802.11s — ESS Mesh Networking (англ.) (Extended Service Set — Расширенный Набор Служб; Mesh Network — Ячеистая Сеть)

802.11T — Wireless Performance Prediction (WPP, Предсказание Производительности Беспроводного Оборудования) — методы тестов и измерений

802.11u — Взаимодействие с не-802 сетями (например, сотовые сети)

802.11v — Управление беспроводными сетями

802.11x — Зарезервирован и не будет использоваться. Не нужно путать со стандартом контроля доступа IEEE 802.1X

802.11y — Дополнительный стандарт связи, работающий на частотах 3,65-3,70 ГГц. Обеспечивает скорость до 54 Мb/с на расстоянии до 5000 м на открытом пространстве.

802.11w — Protected Management Frames (Защищенные Управляющие Фреймы)

802.11ac — Новый, разрабатываемый IEEE стандарт. Скорости передачи данных до 1.3 Гбит/c, энергопотребление по сравнению с 802.11n снижено до 6 раз. Обратная совместимость с 802.11a/b/g/n. Финальная версия стандарта ожидается к концу 2012 года, а устройства, реализующие новый стандарт уже представлены.

802.11ad — Модификация стандарта 802.11ac, работающая в 60Ghz.

802.11as(предположительно) — Новый стандарт использующий резонаторно-щелевые антенны, работающая на частоте 135 ГГц. Скорости передачи данных до 20 Гбит/c. Коэффициент усиления антенны равен 5,68 дБ.

 

Принцип работы

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ.)) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения. Более подробно принцип работы описан в официальном тексте стандарта[4].

 

Однако, стандарт не описывает все аспекты построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

 

По способу объединения точек доступа в единую систему можно выделить:

Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

Бесконтроллерные, но не автономные (управляемые без контроллера)

 

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

Со статическими настройками радиоканалов

С динамическими (адаптивными) настройками радиоканалов

Со «слоистой» или многослойной структурой радиоканалов

 

34.

Принцип действия Bluetooth

Принцип действия основан на использовании радиоволн. Радиосвязь Bluetooth осуществляется в ISM-диапазоне (англ. Industry, Science and Medicine), который используется в различных бытовых приборах и беспроводных сетях (свободный от лицензирования диапазон 2,4-2,4835 ГГц)[8][9]. В Bluetooth применяется метод расширения спектра со скачкообразной перестройкой частоты[10] (англ. Frequency Hopping Spread Spectrum, FHSS). Метод FHSS прост в реализации, обеспечивает устойчивость к широкополосным помехам, а оборудование недорого.

 

Согласно алгоритму FHSS, в Bluetooth несущая частота сигнала скачкообразно меняется 1600 раз в секунду[7] (всего выделяется 79 рабочих частот шириной в 1 МГц, а в Японии, Франции и Испании полоса у́же — 23 частотных канала). Последовательность переключения между частотами для каждого соединения является псевдослучайной и известна только передатчику и приёмнику, которые каждые 625 мкс (один временной слот) синхронно перестраиваются с одной несущей частоты на другую. Таким образом, если рядом работают несколько пар приёмник-передатчик, то они не мешают друг другу. Этот алгоритм является также составной частью системы защиты конфиденциальности передаваемой информации: переход происходит по псевдослучайному алгоритму и определяется отдельно для каждого соединения. При передаче цифровых данных и аудиосигнала (64 кбит/с в обоих направлениях) используются различные схемы кодирования: аудиосигнал не повторяется (как правило), а цифровые данные в случае утери пакета информации будут переданы повторно.

 

Протокол Bluetooth поддерживает не только соединение «point-to-point», но и соединение «point-to-multipoint»

 

Bluetooth SIG утвердил спецификацию Bluetooth 4.0 30 июня 2010г. Bluetooth 4.0 включает в себя протоколы Классический Bluetooth, Высокоскоростной Bluetooth и Bluetooth с низким энергопотреблением. Высокоскоростной Bluetooth основан на Wi-Fi, а Классический Bluetooth состоит из протоколов предыдущих спецификаций Bluetooth.

Протокол Bluetooth с низким энергопотреблением предназначен, прежде всего, для миниатюрных электронных датчиков (использующихся в спортивной обуви, тренажёрах, миниатюрных сенсорах, размещаемых на теле пациентов и т. д.). Низкое энергопотребление достигается за счёт использования специального алгоритма работы. Передатчик включается только на время отправки данных, что обеспечивает возможность работы от одной батарейки типа CR2032 в течение нескольких лет[9]. Стандарт предоставляет скорость передачи данных в 1 Мбит/с при размере пакета данных 8—27 байт. В новой версии два Bluetooth-устройства смогут устанавливать соединение менее чем за 5 миллисекунд и поддерживать его на расстоянии до 100 м. Для этого используется усовершенствованная коррекция ошибок, а необходимый уровень безопасности обеспечивает 128-битное AES-шифрование. Сенсоры температуры, давления, влажности, скорости передвижения и т. д. на базе этого стандарта могут передавать информацию на различные устройства контроля: мобильные телефоны, КПК, ПК и т. п.

 

35.

Тра́нкинговые систе́мы (англ. trunking — объединение в пучок) — радиально-зоновые системы связи, осуществляющие автоматическое распределение каналов связи между абонентами. Под термином «транкинг» понимается метод доступа абонентов к общему выделенному пучку каналов, при котором свободный канал выделяется абоненту на время сеанса связи.

 

Включают наземную инфраструктуру (стационарное оборудование) и абонентские станции. Основным элементом наземной инфраструктуры сети транкинговой радиосвязи является базовая станция (БС), включающая несколько ретрансляторов с соответствующим антенным оборудованием и контроллер, который управляет работой БС, коммутирует каналы ретрансляторов, обеспечивает выход на телефонную сеть общего пользования (ТфОП) или другую сеть фиксированной связи. Сеть транкинговой радиосвязи может содержать одну БС (однозоновая сеть) или несколько базовых станций (многозоновая сеть). Многозоновая сеть обычно содержит соединённый со всеми БС по выделенным линиям межзональный коммутатор, который обрабатывает все виды межзональных вызовов.

 

Современные транкинговые системы, как правило, обеспечивают различные типы вызова (групповой, индивидуальный, широковещательный), допускают приоритетные вызовы, обеспечивают возможность передачи данных и режим прямой связи между абонентскими станциями (без использования канала БС).

 

Классификация

 

По способу передачи голосовых сообщений:

аналоговые (SmarTrunk II, Smartlink, EDACS, LTR, MPT 1327)

цифровые (EDACS, APCO-25, TETRA, TETRAPOL)

 

По организации доступа к системе:

без канала управления (SmarTrunk II)

с распределенным каналом управления (LTR, Smartlink)

с выделенным каналом управления (MPT 1327)

 

По способу удержания канала:

с удержанием канала на весь сеанс переговоров (SmarTrunk II, MPT 1327)

с удержанием канала на время одной передачи (LTR, Smartlink)

 

По конфигурации радиосети:

однозоновые системы (SmarTrunk I)

многозоновые системы (MPT 1327, LTR, Smartlink, TETRA, APCO-25, EDACS, TETRAPOL)

 

По способу организации радиоканала:

полудуплексные (SmarTrunk II, MPT 1327, LTR, Smartlink, TETRA, APCO-25, TETRAPOL)

дуплексные (TETRA, APCO-25, TETRAPOL)

 

 

36.

TETRA (Terrestrial TRunked Radio – наземная система подвижной связи с автоматическим выделением каналов) – это открытый стандарт цифровых ведомственных сетей подвижной связи, т.е. предполагается, что оборудование различных производителей будет совместимо между собой. Стандарт TETRA разработан Европейским институтом стандартов связи (ETSI) в расчете на удовлетворение потребностей наиболее требовательных пользователей, динамично развивающихся ведомственных сетей PMR, представляет собой новейший пример разработок стандартов ETSI и соответствует тенденциям развития, установленным стандартом GSM (общий стандарт подвижной связи) – стандартом, разработанным в Европе, но получившим распространение во всем мире.

 

Деятельность правоохранительных органов и служб общественной безопасности сегодня невозможно представить без использования систем подвижной радиосвязи, среди которых в последнее время наибольшую популярность приобретают транкинговые системы. Эти системы позволяют строить разветвленные ведомственные сети связи с высоким уровнем предоставляемых услуг на больших территориях, сохраняя при этом возможности организации группового соединения абонентов, которое является основным режимом связи подразделений правоохранительных органов.

 

Повышенные требования служб общественной безопасности и правоохранительных органов к оперативности, надежности и безопасности связи, наличию специальных услуг заставляют их обращать особое внимание на системы цифровой транкинговой радиосвязи, имеющие существенные преимущества перед аналоговыми.

 

Доступ к спецификациям TETRA свободен для всех заинтересованных сторон, вступивших в ассоциацию “Меморандум о взаимопонимании и содействии стандарту TETRA” (MoU TETRA) [3]. Ассоциация объединяет разработчиков, производителей, испытательные лаборатории и пользователей различных стран.

 

В данной курсовой работе будет раскрыт основной принцип работы системы:

 

-частоты, с которыми работает стандарт;

 

-стандартные интерфейсы, основные характеристики протокола (а также структура) радиоинтерфейса стандарта TETRA;

 

- передача данных, способ используемой модуляции, шифрование и защита информации.

 

2 Краткая характеристика стандарта

 

 

Система стандарта TETRA может функционировать в следующих режимах [2]:

 

· транкинговой связи;

 

· с открытым каналом;

 

· непосредственной связи.

 

В режиме транкинговой связи обслуживаемая территория перекрывается зонами действия базовых приемопередающих станций. Стандарт TETRA позволяет строить как системы с выделенным частотным каналом управления, так и с распределенным. При работе сети связи с выделенным каналом управления приемопередающие станции предоставляют абонентам несколько частотных каналов, один из которых — канал управления, специально предназначается для обмена служебной информацией. При работе сети с распределенным каналом управления служебная информация передается либо в специально выделенном временном канале (одном из 4-х каналов, организуемых на одной частоте), либо в контрольном кадре мультикадра (одном из 18).

 

В режиме с открытым каналом группа пользователей имеет возможность устанавливать соединение “один пункт — несколько пунктов” без какой-либо установочной процедуры. Любой абонент, присоединившись к группе, может в любой момент использовать этот канал. В режиме с открытым каналом радиостанции работают в двухчастотном симплексе.

 

В режиме непосредственной (прямой) связи между терминалами устанавливаются двух- и многоточечные соединения по радиоканалам, не связанным с каналом управления сетью, без передачи сигналов через базовые приемопередающие станции.

 

К основным сетевым процедурам относятся:

 

- регистрация мобильных абонентов и роуминг (процедура закрепления абонента за одной или несколькими базовыми станциями и обеспечение возможности перемещаться из зоны в зону без потери связи);

 

- повторное установление связи (обеспечение возможности замены сетью базовой станции, используемой абонентом, в случае ухудшения условий связи);

 

- аутентификация абонентов (установление подлинности абонентов);

 

-отключение/подключение абонента (процедура отключения (подключения) абонента от сети по его инициативе);

 

-отключение абонента оператором сети (процедура блокирования работы абонентского терминала оператором сети);

 

- управление потоком данных (обеспечение возможности сети переключать на себя поток данных, направленный к определенному абоненту).

 

В стандарт введены следующие услуги:

 

· вызов, санкционированный диспетчером (режим, при котором вызовы поступают только с санкции диспетчера);

 

· приоритетный доступ (в случае перегруженности сети доступные ресурсы присваиваются в соответствии со схемой приоритетов);

 

· приоритетный вызов (присвоение вызовов в соответствии со схемой приоритетов);

 

· избирательное прослушивание (перехват поступающего вызова без влияния на работу других абонентов);

 

· дистанционное прослушивание (дистанционное включение абонентской радиостанции на передачу для прослушивания обстановки у абонента);

 

· динамическая перегруппировка (динамическое создание, модификация и удаление групп пользователей).спектра.

 

37.

Спу́тниковая свя́зь — один из видов космической радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов. Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными.

 

Спутниковая связь является развитием традиционной радиорелейной связи путем вынесения ретранслятора на очень большую высоту (от десятков до сотен тысяч км). Так как зона его видимости в этом случае — почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает — в большинстве случаев достаточно и одного.

Классификация и основные показатели

 

Автор предлагает классификацию ССС, ориентированных на предоставление услуг радиотелефонной связи и передачи данных, в основу которой положены следующие признаки.

 

Тип используемых орбит. По этому признаку все ССС делятся на два класса - системы с космическими аппаратами (КА) на геостационарной орбите (GEO) и на негеостационарной орбите. В свою очередь, негеостационарные орбиты подразделяются на низкоорбитальные (LEO), средневысотные (MEO) и эллиптические (HEO). Кроме того, низкоорбитальные системы связи подразделяются по виду предоставляемых услуг на системы передачи данных на базе little LEO, радиотелефонные системы big LEO и системы широкополосной связи mega LEO (в литературе используется также обозначение Super LEO).

 

Принадлежность системы к службе. В соответствии с Регламентом радиосвязи различаются три основные службы - фиксированная спутниковая служба (ФСС), подвижная спутниковая служба (ПСС) и радиовещательная спутниковая служба (РСС).

 

Статус системы. Зависит от назначения системы, степени охвата обслуживаемой территории, размещения и принадлежности наземных станций. В зависимости от статуса ССС можно разделить на международные (глобальные и региональные), национальные и ведомственные (последние в данном обзоре не рассматриваются).

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.