Здавалка
Главная | Обратная связь

ДВУМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ



 

Двумерной называют случайную величину (Х, Y), возможные значения которой есть пары чисел (х, у). Составляющие Х и Y, рассматриваемые одновременно, образуют систему двух случайных величин.

Двумерную величину геометрически можно истолковать как случайную точку М(Х, Y) на плоскости хОу, либо как случайный вектор .

Функция распределения двумерной случайной величины (Х, Y) определяется соотношением F(x; y) = P(X < x, Y < y) и геометрически определяет вероятность попадания случайной точки (Х, Y) в бесконечный квадрат с вершиной в точке (Х, Y), лежащий левее и ниже ее.

Дискретной называют двумерную величину, составляющие которой дискретны; непрерывной называют двумерную величину, составляющие которой непрерывны.

Законом распределения вероятностей двумерной случайной величины называют соответствие между возможными значениями и их вероятностями.

Закон распределения дискретной двумерной случайной величины может быть задан с помощью таблицы:

X Y х1 х2 хi
у1 p11 p21 pi1
у2 p12 p22 pi2
yj p1j p2j pij

где x1<x2<…<xi<…; y1<y2<…<yj<…;

pij – вероятность события, заключающаяся в одновременном выполнении равенств Х = хi; Y = yj, при этом .

Функция распределения двумерной дискретной случайной величины определяется равенством .

Закон распределения непрерывной двумерной случайной величины может быть задан с помощью функции плотности вероятности f(x,y), удовлетворяющей условиям:

1) f(x; y) ³ 0; 2) .

Если все возможные значения (Х, У) принадлежат конечной области D, то .

Вероятность попадания случайной точки (Х, У) в область D определяется равенством .

Связь плотности вероятности f(x, y) и функции распределения F(x ,y) двумерной непрерывной случайной величины задается соотношениями ; .

Законы распределения составляющих непрерывной двумерной случайной величины вычисляются по формулам ; .

Для нахождения законов распределения составляющих двумерной дискретной случайной величины надо суммировать вероятности в таблице по строкам или по столбцам.

Условным распределением составляющей Х при Y = уj (j – сохраняет одно и то же значение при всех возможных значения Х) называют совокупность условных вероятностей , , …, .

Аналогично определяется условное распределение Y. Условные вероятности составляющих X и Y вычисляются соответственно по формулам

; .

Для непрерывных случайных величин формулы вычисления условных плотностей распределения выглядят так:

; .

Числовые характеристики составляющих вычисляются по формулам:

; – для дискретных случайных величин;

; – для непрерывных случайных величин;

; ;

; .

Точка называется центром рассеяния двумерной случайной величины (X, Y).

Для оценки тесноты взаимосвязи составляющих вычисляют корреляционный момент или ковариацию .

Корреляционный момент удобно вычислять по формуле , где в дискретном и в непрерывном случае.

Степень связи между составляющими в чистом виде характеризует так называемый нормированный корреляционный момент или коэффициент корреляции , обладающий следующими свойствами: 1) 2) тогда и только тогда, когда случайные величины связаны линейной зависимостью.

Случайные величины Х, У называются некоррелированными, если КXY = 0, а следовательно, и .

Случайные величины Х, Y называются независимыми, если вероятность одной из них принять значение, лежащее в любом промежутке области ее значений, не зависит от того, какое значение приняла другая величина.

Для двумерной дискретной случайной величины, представленной в виде таблицы распределения, условие независимости составляющих Х и Y состоит в том, что для любых i и j , где , . Внешне это выражается в том, что строки и столбцы таблицы пропорциональны.

Для двумерной непрерывной случайной величины условие независимости состоит в том, что .

Независимые случайные величины всегда некоррелированны. Обратное, вообще говоря, неверно (т.е. некоррелированные величины могут быть зависимыми).

Условным законом распределения случайной величины Yx называется закон распределения случайной величины Y при условии, что Х = х.

Функциональная зависимость М[Yx] = j(x) называется регрессией случайной величины Y на случайную величину Х.

Среднее значение квадрата отклонения достигает минимально возможного, когда j(х) – регрессия Y на Х (минимизирующее свойство регрессии).

Функция из класса функций определяемых набором параметров а1 , …, аk называется среднеквадратичной регрессией Y на Х в этом классе функций, если среднее значение квадрата отклонения достигает на наборе параметров минимального значения для всех функций этого класса.

Простейшей функцией является линейная: . Уравнение прямой среднеквадратичной регрессии Y на Х выглядит так: .

Аналогично уравнение прямой среднеквадратичной регрессии Х на Y: .

16.1. Восстановить законы распределения составляющих Х и Y двумерной дискретной случайной величины (Х; Y), заданной таблицей распределения. Найти условное распределение случайной величины Х при условии, что Y= y1. Найти условное распределение случайной величины Y при условии, что Х = х2.

Х Y
0,2 0,18 0,22 0,16
0,8 0,08 0,16 0,2

16.2. Найти числовые характеристики M[X], D[X], s[X], M[Y], D[Y], s[Y] составляющих Х и Y двумерной дискретной случайной величины (Х; Y), заданной таблицей распределения. Вычислить корреляционный момент и коэффициент корреляции данной случайной величины.

Х Y 0,8 1,5
0,2 0,2 0,1
0,2 0,1 0,2

16.3. По некоторой цели производится два выстрела. Вероятность попадания при одном выстреле равна 0,7. Составить таблицу распределения двумерной случайной величины (Х; Y), где Х – число попаданий, Y – число промахов. Вычислить корреляционный момент и коэффициент корреляции данной случайной величины. Определить, зависимы или нет составляющие Х и Y.

16.4. Найти числовые характеристики M[X], D[X], s[X], M[Y], D[Y], s[Y] составляющих Х и Y двумерной непрерывной случайной величины (Х; Y), имеющей плотность , где D – треугольник ограничен-ный линиями: х = 0; у = 0; х + у = 1. Вычислить корреляционный момент и коэффициент корреляции данной случайной величины. Найти функцию распределения .

16.5. Двумерная непрерывная случайная величина (Х; Y) подчинена закону распределения с плотностью , где D – квадрат . Найти коэффициент а. Определить, зависимы или нет составляющие Х и Y. Найти коэффициент корреляции и условные законы распределения Х, Y.

16.6. Двумерная непрерывная случайная величина (Х; Y) распределена равномерно в круге радиуса R= 5 с центром в начале координат. Доказать, что составляющие Х и Y являются зависимыми и некоррелированными величинами.

16.7. Найти плотность вероятности f(x; y) двумерной случайной величины (Х; Y), имеющей функцию распределения .

16.8. Найти уравнения прямых линий средних квадратических регрессий Y на Х и Х на Y двумерной случайной величины (Х; Y), заданной таблицей распределения:

  Х Y 0,2 0,5  
  0,3 0,1  
  1,5 0,2 0,1  
  0,1 0,2  
     
               

 

16.9. Найти числовые характеристики M[X], D[X], s[X], M[Y], D[Y], s[Y] составляющих Х и Y двумерной дискретной случайной величины (Х; Y), заданной таблицей распределения. Вычислить корреляционный момент и коэффициент корреляции данной случайной величины.

Х Y 0,5
0,5 0,2 0,1 0,2
0,1 0,3 0,1

16.10. Найти числовые характеристики M[X], D[X], s[X], M[Y], D[Y], s[Y] составляющих Х и Y двумерной непрерывной случайной величины (Х; Y), имеющей плотность , где D – прямоугольник . Вычислить корреляционный момент и коэффициент корреляции данной случайной величины. Найти функцию распределения .

16.11. Двумерная непрерывная случайная величина (Х; Y) подчинена закону распределения с плотностью , где D – квадрат . Определить, зависимы или нет составляющие Х и Y. Найти коэффициент корреляции и условные законы распределения Х, Y.

16.12.Найти плотность вероятности f(x; y) двумерной случайной величины (Х; Y), имеющей функцию распределения .

16.13. Найти уравнения прямых линий средних квадратических регрессий Y на Х и Х на Y двумерной случайной величины (Х; Y), заданной таблицей распределения:

Х Y 1,5
0,3 0,1 0,1
0,1 0,2
0,1 0,1







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.