Здавалка
Главная | Обратная связь

Внепечное рафинирование стали



 

Процесс рафинирования стали - обработка стали вакуумом в металлургии влияет, как известно, на протекание тех реакций и процессов, в которых принимает участие газовая фаза.

Газовая фаза образуется, в частности, при протекании реакции окисления углерода (образование СО), при протекании процессов выделения растворенных в металле водорода и азота, а также процессов испарения примесей цветных металлов.

В стали практически всегда содержится определенное количество углерода. Равновесие реакции [С] + [О] = COгаз, К = Pсо/а[C]а[O] при обработке вакуумом сдвигается вправо, кислород реагирует с углеродом, образуя окись углерода.

В тех случаях, когда кислород в сплаве находится в составе оксидных неметаллических включений, снижение давления над расплавом приводит в результате взаимодействия с углеродом к частичному или полному разрушению этих включений:

(MeO) + [C] = Me + COгаз

Более слабые включения, такие например, как MnO или Cr2O3, восстанавливаются почти нацело; для восстановления более прочных включений, таких, например, как Al2O3 или TiO2, требуется очень глубокий вакуум. Снижение концентрации кислорода в сплаве ("окисленности" металла) при обработке вакуумом за счет реакции окислениия углерода получило название "углеродное раскисление стали".

Обработка металла вакуумом влияет и на содержание в стали водорода и азота. Выше было сказано, что содержание водорода в стали определяется при прочих равных условиях давлением водорода в газовой фазе. При снижении давления над расплавом равновесие реакции 2[Н] = Н2газ сдвигается вправо. Водород в жидкой стали отличается большой подвижностью, коэффициент диффузии его достаточно велик (DH = 1,2-1,5 * 10-3 см/с), и в результате вакуумирования металлопродукции значительная часть содержащегося в металле водорода быстро удаляется из сплава.

Равновесие реакции 2[N] = N2газ при снижении давления также сдвигается вправо, однако азот в стали менее подвижен, коэффициент диффузии его в жидком железе на порядок меньше, чем водорода [D = (1*4) • 10-4 см/с], в результате интенсивность очищения сплава от азота под вакуумом значительно ниже, чем от водорода. Требуются более глубокий вакуум и продолжительная выдержка, чтобы достигнуть заметного очищения металла от азота.

Процесс очищения металла от водорода и азота под вакуумом ускоряется одновременно протекающим процессом выделения пузырьков окиси углерода. Эти пузырьки интенсивно перемешивают сталь и сами являются маленькими "вакуумными камерами", так как в пузырьке, состоящем только из СО, парциальные давления водорода и азота равны нулю. Таким образом, при обработке стали вакуумом в нем уменьшается содержание растворенных кислорода, водорода, азота и содержание оксидных неметаллических включений; в результате выделения большого количества газовых пузырьков сталь перемешивается, становится однородным, происходит "гомогенизация" расплава, соответственно мтеллопрокат и металлопродуция из таких сталей будет более высококачественной.

Кроме того, в тех случаях, когда сталь содержит в повышенных концентрациях примеси цветных металлов (свинца, сурьмы, олова, цинка и др.), заметная часть их при обработке вакуумом испаряется.

Необходимо иметь в виду, что при обработке вакуумом испаряется также и железо и полезные примеси (очень интенсивно, например, испаряется марганец). Однако эти потери становятся ощутимыми лишь при очень глубоком вакууме и очень длительной выдержке.

Продувка стали инертными газами

Такой вид рафинирования стали как продувка металла инертными газами в известной мере влияет на качество готовой металлопродукции так же, как обработка вакуумом. При продувке инертными газами массу стали пронизывают тысячи пузырьков инертного газа (обычно аргона). Каждый пузырек представляет собой маленькую "вакуумную камеру", так как парциальные давления водорода и азота в таком пузырьке равны нулю. При продувке инертным газом происходит иненсивное перемешивание сплава, усреднение его состава; в тех случаях, когда на поверхности металла наведен хороший шлак, перемешивание облегчает протекание процесса ассимиляции таким шлаком неметаллических включений; если этот шлак имеет высокую основность (а также малую окисленность) происходит и десульфурация стали.

Когда хотят получить сталь с особо низким содержанием углерода (например, особо качественную нержавеющую сталь или металлопрокат), кислород, подаваемый для продувки ванны, разбавляют инертным газом, при этом равновесие реакции O2 + 2[С] = 2СОгаз сдвигается вправо, так как в газовой фазе в составе продуктов реакции, кроме оксидов углерода, будет находиться и инертный газ, и парциальное давление Pсо уменьшится. Масса пузырьков инертного газа сама облегчает процессы газовыделения, так как эти пузырьки являются готовыми полостями с развитой поверхностью раздела для образования новой фазы.

Необходимо иметь в виду, что продувка стали инертным газом сопровождается снижением температуры сплава (газ нагревается и интенсивно уносит тепло), поэтому ее часто используют для регулирования температуры металла в ковше.

Технически операция продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка стали вакуумом, поэтому там, где это возможно, продолжительная по времени продувка инертными газами, проводимая через пористые пробки в днище ковша или через полый стопор, заменяет обработку вакуумом. Во многих случаях продувку стали инертным газом проводят одновременно с обработкой вакуумом, так как вызываемое продувкой энергичное перемешивание металла ускоряет процессы вакуумирования, делает вакуумирование более эффективным. В качестве инертного газа чаще всего используют аргон. Когда это возможно, при производстве стали простых марок для металлопродукции обычного качества, невысоких температурах, аргон заменяют более дешевыми газами (азотом или даже паром).

Таким образом при продувке стали инертными газами достигают:

энергичного перемешивания сплава, облегчения протекания процессов удаления в шлак нежелательных примесей;

усреднения состава металла;

уменьшения содержания газов в стали;

облегчения условий протекания реакции окисления углерода;

снижения температуры металла.

Перемешивание стали синтетическим шлаком в металлургии

Перемешивание стали со специально приготовленным ("синтетическим") шлаком также является способом рафинирования стали и позволяет интенсифицировать переход в шлак тех вредных примесей, которые удаляются в шлаковую фазу: серы, фосфора, кислорода (в виде оксидных неметаллических включений). В тех случаях, когда основная роль в удалении примеси принадлежит шлаковой фазе, скорость процесса пропорциональна величине площади межфазной поверхности.

 

Обычно способ обработки стали синтетическим шлаком используют прежде всего для удаления серы, поэтому основой искусственно синтетического шлака является СаО; для снижения температуры плавления в состав шлаковой смеси вводят Al2О3 или другие добавки. Поскольку в таком шлаке практически нет оксидов железа, он является одновременно хорошим раскислителем. Если ставится задача очистки сплава от неметаллических включений определенного состава, то соответственно подбирают состав синтетического шлака. Во всех случаях задача заключается, во-первых, в получении шлака нужного состава и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлической фаз.

Продувка стали порошкообразными материалами в металлургии

Такое рафинирование сплава как вдувание в сталь порошкообразных материалов также имеет целью обеспечить максимальный контакт вдуваемых твердых реагентов с металлом. Вместе с тем положительная сторона метода состоит в том, что реагент в сталь вдувается струей газа-носителя, который сам оказывает определенное воздействие на сталь. Газомносителем может быть и окислитель (например, кислород или воздух), и восстановитель (например, природный газ), и нейтральный газ (например, аргон). Для удаления фосфора в струе кислорода в сталь вдувают твердую смесь, состоящую из извести, железной руды и плавикового шпата, для удаления серы в металл вдувают в струе аргона смесь извести и плавикового шпата.

Плавиковый шпат вводится в состав смесей для повышения жидкотекучести шлака. Этим способом можно вдувать в сталь (в струе нейтрального или восстановительного газа) такие сильнодействующие реагенты, которые из-за больших энергий взаимодействия и соответствующего пироэффекта обычными способами вводить в сталь нельзя (кальций, магний) или из-за их вредного действия на здоровье опасно (свинец, селен, теллур).

Ускоренная или направленная кристаллизация сплава имеет целью улучшить структуру слитка, ликвидировать или уменьшить ликвацию, центральную рыхлость и пористость и тому подобные пороки. Скорость кристаллизации слитка стали пропорциональна разности температур у фронта кристаллизации и на поверхности слитка. Чем больше масса слитка, тем медленнее он кристаллизуется и тем сильнее в обычных условиях развиваются ликвационные и другие неприятные явления.

Искусственное охлаждение слитков стали (применяемое, например, при непрерывной разливке стали) ускоряет процесс кристаллизации и положительно влияет на качество слитка. Регулируя время пребывания металла в жидком состоянии в изложнице или кристаллизаторе и интенсивность охлаждения металла, можно обеспечить получение такого слитка, у которого вообще не будет центральной менее плотной и более обогащенной ликватами зоны беспорядочно ориентированных кристаллов.

Обычно для интенсивного охлаждения поверхности слитка (непосредственно или через стенки кристаллизатора) пользуются водой.

Эти общие положения рафинирования стали на практике реализуют в результате использования того или иного способа и агрегата из большого многообразия методов повышения качества выплавляемых сталей и конечной металлопродукции (стальных профилей, уголков, листов и других видов металлопроката).

 

 

4. Комплексные методы внепечной обработки стали

По мере совершенствования простых методов внепечной обработки получают развитие комбинированные или комплексные методы внепечной обработки стали. Это развитие идет по пути или комбинации нескольких "простых" методов, или создания новых агрегатов с комплексной обработкой стали (сокращенно АКОС), или превращения "простых" методов в комплексные.

Пример решения проблемы по первому пути показан на рис. 1, когда необходимо использовать метод вакуумирования, организуют последовательную обработку металла вначале на установке с вдуванием кальцийсодержащих материалов (раскисление и удаление серы), затем на вакуумной установке (дегазация). В случае необходимости получения низкоуглеродистых сталей (например, коррозионностойких, жаропрочных из которых изготавливают качественный металлпрокат) широко используют комбинирование вакуумной обработки с аргоно-кислородной продувкой и т.д.

Пример решения по второму пути создание агрегатов, получивших название ковш-печь или LF (Ladle-Furnace, англ.). Процесс LF проводится в ковше, футерованном основными огнеупорами, накрываемом крышкой, через которую опускают электроды (рис. 2). Процесс включает перемешивание продувкой металла аргоном в ковше, дуговой подогрев и обработку металла синтетическим шлаком в процессе его перемешивания аргоном.

Рисунок 1. Схема последовательной обработки стали вначале на установке с вдуванием кальцийсодержаших материалов, затем на установке циркуляционного вакуумирования

Процесс обеспечивает не только получение заданного химического состава и температуры металла, но и снижение количества неметаллических включений в результате удаления серы и кислорода и существенное повышение качества конечной металлопродукции и металлопроката.

Рисунок 2. Рис. слева. Установка ковш-печь: 1 - шиберный затвор; 2 - тележка; 3 - основной шлак; 4 - смотровое окно; 5 - электроды; 6 - бункеры для хранения легирующих добавок; 7 - инертная атмосфера внутри печи; 8 - нагрев погруженной дугой; 9 - ковш; 10 - жидкая сталь; 11 - пористая пробка для подачи аргона Рис. справа. Схема установки ковш-печь типа АР (Arc-Process): 1 - ковш; 2 - крышка-свод; 3 - бункера для ферросплавов и флюсов; 4 - фурма для подачи в сталь аргона или азота; 5 - электроды; 6 - подача аргона; 7 - фурма для вдувания порошка силикокальция в струе аргона; 8 - безокислительная атмосфера; 9 - шлак CaO-SiO2-Al2O3

На рис. 2 показан вариант установки типа ковш-печь, предусматривающий возможность комплексных методов внепечной обработки стали: перемешивания металла аргоном под слоем синтетического шлака, вдувание порошкообразных реагентов и подогрев расплава одновременно.

Агрегаты ковш-печь работают как на переменном, так и на постоянном токе. На рис. 3 показаны примерные схемы работы установок ковш-печь на постоянном токе. По схеме рис. 3, а нагрев ванны происходит через шлак. По такой схеме работает крупная (160-т емкости) установка внепечной обработки стали в конвертерном цехе НЛМК.

В качестве примера превращения "простого" метода в комплексный можно привести пример трансформации агрегата циркуляционного вакуумирования (RH).

Рисунок 3. Схема установки ковш-печь постоянного тока: а - без подового электрода 1 - ковш; 2 - свод; 3 - электроды; 4 - шлак; 5 - пористая пробка); б - с подовым электродом (7, 2 - электроды; 3 - шлак; I - к вакуумной системе; Н - ввод добавок и флюсов)

Первым этапом усложнения процесса явилось дополнительное введение кислорода в вакуумную камеру с целью интенсификации обезуглероживания и дополнительного подогрева металла (рис. 4, а). Далее, для подогрева металла в процессе его обработки начали использовать метод подачи в вакуумкамеру алюминия (в виде проволоки или в виде гранул) с последующим окислением его вдуванием кислорода (при протекании реакции 4Al + 3O2 = 2Al2O3 + Q выделяется большое количество тепла).

Дальнейшее усложнение - подача сверху из бункера непосредственно в вакуум-камеру или снизу в подающий патрубок (рис. 4, б) шлакообразуюших материалов (обычно десульфурирующих смесей на базе СаО-CaF2); вариант такой технологии получил наименование VOF-процесс (англ. Vacuum-Oxygen-Flux Process).

Рисунок 4. Усовершенствования процесса циркуляционного вакуумирования: а - подача кислорода; б - подача флюсов; в - создание зоны интенсивного барботажа

На рис. 4,в показана применяемая схема дополнительной подачи кислорода и аргона непосредственно в камеру вакууматора. Такая схема позволяет эффективно использовать вводимый в камеру алюминий для подогрева собственно металла, позволяет контролировать и регулировать температуру металла (меняя соотношение O2: Ar) и образовывать в камере зоны интенсивного кипения и перемешивания металла. Это дает возможность, меняя расход алюминия и соотношение O2: Ar, управлять процессами окисления углерода, кремния, марганца, хрома.

Такая технология позволяет получить сталь, содержащую не более (%): S 0,002; Р 0,015; [О] 0,002; [Н] 0,00015.

Практика показала также, что введение углеродсодержащих добавок (например, электродного боя) в камеры порционного или циркуляционного вакууматоров позволяет, зная массу вводимого углерода, получать нужное содержание углерода в готовой стали. В результате создаются возможности перенести полностью в ковш такие операции, как раскисление, легирование и коррекция по углероду.

Выше были отмечены особые трудности при необходимости получения очень низких содержаний углерода. Использование способа, показанного на рис. 4,в, облегчает и эту задачу.

Приведенные примеры показывают, что агрегат порционного вакуумирования позволяет проводить операции:

· дегазации;

· подогрева (за счет окисления кислородом вводимого алюминия);

· десульфурации (обработка флюсом);

· раскисления (ввод раскислителей);

· легирования (ввод легирующих добавок);

· науглероживания;

· глубокого обезуглероживания.

В результате комбинированных методов внепечной обработки, готовая сталь более качественная, такая сталь служит материалом для производства металлоконструкций ответственного назначения, балок двутавровых, швелера, профнастила, арматурного проката, высококачественных профильных труб, листа стального, и другого металлопроката.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.