Здавалка
Главная | Обратная связь

Создание нерелятивсткой квантовой механики



 

Такие новые, представления и принципы были созданы плеядой выдающихся физиков XX в. в 1925—1927 гг. В. Гейзенберг установил основы так называемой матричной механики; Л. де Бройль, а за ним Э. Шредингер разработали волновую механику. Вскоре выяснилось, что и матричная механика, и волновая механика — различные формы единой теории, получившей название квантовой механики.

В 1926 г. Гейзенберг впервые высказал основные положения квантовой механики в матричной форме. Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях («наблюдаемыми» величинами, в терминологии Гейзенберга) — частотой излучения спектральных линий, их интенсивностью, поляризацией и т.п. «Ненаблюдаемые» величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т.д., не следует использовать в теории атома.

Однако в согласии с принципом соответствия новая теория должна определенным образом соответствовать классическим теориям, соотношения величин новой теории должны быть аналогичными отношениям классических величин. При этом каждой классической величине нужно найти соответствующую ей квантовую величину и пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами. Такие соответствия могут быть получены только из операций измерения.

Анализируя закономерности измерения величин в квантовой ме­тке, Гейзенберг приходит к важному принципиальному результату о невозможности одновременного точного измерения двух канонически сопряженных величин и устанавливает так называемое соотношение неопределенностей. Этот принцип является основой физической интерпретации квантовой механики.

Второе направление в создании квантовой механики сначала развивалось в работах Л. де Бройля. Он высказал идею о волновой природе материальных частиц. На основании уже установленного факта одновременно и корпускулярной, и волновой природы света, а также оптико-механической аналогии де Бройль пришел к идее о существовании волновых свойств любых частиц материи. На первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обратили серьезного внимания. Де Бройль впоследствии писал, что высказанные им идеи были приняты с «удивлением, к которому, несомненно, примешива­ть какая-то доля скептицизма». Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние идеи де Бройля оказали на Э. Шрёдингера, который увидел в них основу для создания новой теории квантовых процессов. В 1926 г. Шрёдингер, развивая идеи Бройля, построил так называемую волновую механику.

В квантовой механике разница между полем и системой частиц исчезает. Так, например, электрон, вращающийся вокруг ядра, можно представить как волну, длина которой зависит от скорости. Там, где укладывается целое число длин волн электрона, волны складываются и образуют боровские разрешенные орбиты. А там, где целое число длин волн не укладывается, гребни волн компенсируют впадины, там орбиты не будут разрешены.

Волновая механика получила прямое экспериментальное подтверждение в 1927 г., когда К.Дж. Дэвиссон и П. Джермер обнаружили явление дифракции электронов. Кроме того, выяснилось, что правильно и количественное соотношение для длин волн де Бройля. Квантовая механика — теоретическая основа современной химии. С помощью квантовой теории удалось построить также совершенные теории твердого тела, электрической проводимости термоэлектрических явлений и т.д. Она дала основания для построения теории радиоактивного распада, а в дальнейшем стала базой для ядерной физики.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.