Теоретические основыСтр 1 из 2Следующая ⇒
Лабораторная работа №1 Исследование характеристик дифференцирующей цепи
1. Цель работы: овладение методами измерения основных характеристик линейной цепи (звена).
Теоретические основы
Дифференцирующей называется электрическая цепь, в которой выходная величина пропорциональна производной от входной величины. Простейшими дифференцирующими цепями могут служить цепи с емкостью или индуктивностью (рис.2.1).
Рис.2.1 Простейшие дифференцирующие цепи В цепи с емкостью
Принимая uc (t) за входную величину, а ток ic (t) – за выходную, получим дифференцирующую цепь. В цепи с индуктивностью Принимая iL(t) за входную величину, а uL(t) – за выходную, получим дифференцирующую цепь. Использовать ток как входную или выходную величину практически затруднительно, так как в первом случае необходимо иметь стабильный источник тока, а во втором для его измерения необходимо включить последовательно дополнительное сопротивление, которое оказывает влияние на процесс. Следовательно, входной и выходной величинами целесообразно выбирать напряжения, при этом используются rC - и rL – цепи. На практике широкое распространение получила rC - цепь.
Условие, при котором rC-цепь выполняет операцию дифференцирования, вытекает из уравнения Если принять то При синусоидальном входном напряжении уравнение цепи в комплексной форме
По условию дифференцирования тогда
При несинусоидальной форме напряжения U1(t) условие дифференцирования должно быть выполнено для всех гармонических составляющих входного сигнала. При этом условием дифференцирования является где ωВ – частота наивысшей гармоники, которой нельзя пренебречь.
Идеальное дифференцирование прямоугольного импульса показано на рис. 2.2,а. Амплитуда выходного сигнала u2(t)бесконечно велика.
Рис.2.2 Идеальное (а) и реальное (б) дифференцирование прямоугольного импульса
График напряжения u2(t)на выходе реальной дифференцирующей цепи показан на рис.2.2,б. Напряжение u2(t)представляет собой импульсы экспоненциальной формы с чередующейся полярностью. За длительность выходного импульса принимают время, равное утроенному значению постоянной времени цепи Дифференцирующая цепь называется еще укорачивающей, так как длительность выходных импульсов значительно меньше, чем входных.
Допустим, конденсатор разряжен. При подаче на вход RC-цепи импульса напряжения конденсатор сразу же начнет заряжаться током, проходящим через него самого и резистор. Сначала ток будет максимальным, затем по мере увеличения заряда конденсатора постепенно уменьшится до нуля по экспоненте. Когда через резистор проходит ток, на нем образуется падение напряжения, которое определяется, как U=i R, где i-ток заряда конденсатора. Поскольку ток изменяется экспоненциально, то и напряжение будет изменяться также - экспоненциально от максимума до нуля. Падение напряжения на резисторе как раз и является выходным, величину которого можно определить по формуле Uвых = U0e-t/τ. Передаточная функция цепи (коэффициент передачи) - равна отношению комплексной амплитуды сигнала на выходе к комплексной амплитуде сигнала на входе:
Импульсная характеристика g(t) -реакция цепи на действие сигнала в виде δ-функций, т. е. это сигнал на выходе, если сигнал на входе есть d-функция. Импульсная характеристика цепи и передаточная функция связаны преобразованием Фурье: Переходная характеристика цепи h(t) - является откликом на сигнал, называемый единичным скачком: h(t) = 1 при t >0, h(t) = 0 при t < 0, при этом Для дифференцирующей цепи: Комплексный коэффициент передачи: Передаточная функция: ФЧХ: Импульсная характеристика: Рис.2.3 АЧХ (а) и ФЧХ (б) идеального дифференциатора Условие хорошего дифференцирования сигнала: для синусоидального колебания с частотой w дифференцирование осуществляется при условии, что частота его много меньше величины 1/RC. Если на входе действует сложный сигнал, то он будет хорошо дифференцироваться, если наивысшая частота в спектре входного сигнала много меньше граничной частоты цепочки. Подставляя в выражение для передаточной функции K(p) вместо р комплексную величину jω, мы получаем однозначную зависимость между передаточной функцией и частотными характеристиками звена. При этом комплексная величина K(jω) есть функция частоты, и называется амплитудно-фазовой характеристикой (АФХ). При построении K(jω) в прямоугольной системе координат - комплексной плоскости - получаем годограф амплитудно-фазовой характеристики, где частота ω входит как параметр. Примерный вид годографа АФХ показан на рис. 2.4. Каждой точке такого годографа соответствует определенная частота ω, как и помечено на рисунке. Рис.2.4 Амплитудно-фазовая характеристика
АФЧХ реального дифференцирующего звена приведена на рис. 2.5. Рис.2.5 Годограф АФЧХ реального дифференцирующего звена
Годограф описывает полуокружность с радиусом, стремящимся к ¥ при T стремящимся к 0. При этом годограф прижимается к положительной мнимой полуоси и становится практически неотличим от годографа идеального дифференцирующего звена. Частота w*=1/T считается максимальной, при которой еще реальное дифференцирующее звено работает "почти как идеальное". При достаточно низких частотах реальное дифференцирующее звено близко к идеальному. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|