Здавалка
Главная | Обратная связь

Яке існує обладнання для газової хроматографії.



Устаткування для газової хроматографії : головним приладом для цього методу досліджень є газовий хроматограф :

Принципова схема газового хроматографа:

1-балон з інертним газом;

2-пристрій для введення проби в хроматографічну колонку;

3-хроматографічна колонка;

4-термостат;

5-детектор;

6-перетворювач сигналів;

7-реєстратор.

Джерело газу-носія :найчастіше це - балон із стиснутим або зрідженим газом, який зазвичай знаходиться під великим тиском (до 150 атмосфер). Найчастіше при хроматографії використовують гелій, рідше азот, ще рідше водень та інші гази. В Україні прийнята колірна маркування балонів, що містять різні гази. Забарвлення балона Колір напису з назвою газу

Азот Чорний Жовтий

Водень Темно-зелений Червоний

Гелій Коричневий Білий

Аргон (техн.) Чорний Синій

Аргон (чіст.) Сірий Зелений

Кисень Блакитний Чорний

Горючі гази Червоний Білий

Пристрій введення проби призначено для подачі проби аналізованої суміші в хроматографічну колонку.

У тому випадку, якщо хроматограф призначений для аналізу рідких проб, пристрій введення проб поєднується з випарником. Проба вводиться у випарник за допомогою мікро шприца шляхом проколювання еластичної прокладки. Випарник зазвичай нагрітий до температури, що перевищує температуру самої колонки на 50 C. Обсяг введеної проби - кілька мікролітрів.

Задача.

Гальванічний елемент: срібний і стандартний гідроґенний електроди, 1М р-н AgNO3. Знайти рівняння електродних процесів і сумарної реакції. Яка ЕРС елемента?

Розв’язок:

Запишемо рівняння реакцій, що відбуваються на електродах:

Ag+ + 2e Ag φ = 0,80В

2H+ + 2e H2 φ = 0B

Сумарне рівняння реакції:

2Ag+ + H2 2Ag + 2H+

Щоб визначити ЕРС елемента необхідно обчислити електродні потенціали на електродах за даної концентрації розчину. Обчислимо значення φ, використавши рівняння Нернста:

φAg = 0,80 + 0,059lg1 = 0,80 + 0 = 0,80B

Аналогічно для гідрогену:

φH = 0.

ЕРС гальванічного елементу:

E = φAg – φH = 0,80 – 0 = 0,80B.

 

ЕТАЛОННА ВІДПОВІДЬ

Варіант №19

Охарактеризувати фотометричний метод. Основний закон фотометрії. Поняття про коефіцієнт пропускання і оптичної густини. Фотометр. Фотометричні візуальні (колориметричні) методи аналізу. Метод стандартних серій. Приклади колометричних визначень.

Оптичні методи аналізу: в основі колориметричного методу аналізу лежать реакції утворення чи руйнування забарвлених сполук, тобто сполук, здатних поглинати світло. Інтенсивність забарвлення сполуки пропорційна концентрації розчину. В основі цього методу лежить хімічна реакція від якої залежить час витрачений на аналіз, чутливість і час методу. Його застосовують для визначення вмісту малих кількостей різних речовин (1*10 - 1*10 г в об’ємі 50-100 мл). Такі кількості не можна визначити ваговим та об’ємним методами.

При проходженні крізь забарвлений розчин монохроматичного пучка світла, частина його поглинається, а частина проходить крізь розчин, при цьому інтенсивність світла зменшується. Оптична густина розчину (А), яка дорівнює десятковому логарифму відношення початкової інтенсивності пучка світла (І0) до інтенсивності пучка світла (І), який пройшов крізь усю товщину (l) забарвленого розчину збільшується прямо пропорційно збільшення вмісту речовини.

Закон Ламберта-Бугера-Бера: залежність оптичної густини забарвленого розчину від концентрації речовини, товщини шару і молярного коефіцієнта поглинання

 

A = lg I0/I = E*l*C чи K*C*h

Поглинання монохроматичного світла пропорційне концентрації розчину і товщині шару.

В колориметричних методах в процесі вимірювання використовують стандартний розчин (це розчин порівняння, в якому вміст речовини відомий).

Порівняти два світлових потоки можна візуально неозброєним оком, знімаючи концентрацію речовини, товщину шару чи інтенсивність світлового потоку, або за допомогою фотоелектричних приладів у яких світлова енергія перетворюється в електричний струм.

Метод стандартних серій (шкали): інтенсивність забарвлення досліджуваного розчину порівнюють з інтенсивність забарвлення стандартних розчинів серії, для виготовлення якої беруть 10—15 однакових пробірок, у першу наливають 0,1 мл стандартного розчину, у другу — 0,2 мл і т. д.. збільшуючи його кількість за геометричною прогресією. Потім добавляють усі реактиви, потрібні для утворення забарвленої сполуки. Аналогічно обробляють досліджуваний розчин. Вміст речовини в досліджуваному розчині дорівнюватиме вмісту речовини в стандартному розчині з однаковим забарвленням.

Метод колориметричного титрування: дві однакові пробірки діаметром 2—2,5 см і висотою 25—30 см вставляють у штатив, в обидві пробірки наливають реактиви. в першу — досліджуваний розчин, а в другу поступово добавляють стандартний (з відомою концентрацією речовини) розчин із бюретки. Стандартний розчин добавляють доти, поки інтенсивність забарвлення обох розчинів не зрівняється при однакових об'ємах. Розчини в обох пробірках весь час перемішують. Вміст речовини знаходять за об'ємом добавленого стандартного розчину. Це легко зробити, тому що концентрація стандартного розчину відома. Перевага методу колориметричного титрування перед методом шкали в тому, що цей метод можна застосувати тоді, коли забарвлена сполука недостатньо стійка в часі (тіоціанат феруму).

Колориметр : у колориметрах занурення зрівнюють інтенсивність забарвлення, змінюючи товщину шару розчину. Досліджуваний і стандартний розчини наливають у циліндричні скляні посудини, які за допомогою спеціальних механізмів можуть опускатись і підніматись. У ці циліндри вільно входять нерухомо закріплені скляні палички з оптичного скла. При опусканні чи підніманні циліндрів змінюється товщина шару забарвленого розчину, що фіксується на спеціальних шкалах, з'єднаних через покажчик рівня розчину з циліндрами. Однакова товщина шару в обох циліндрах при однаковій інтенсивності забарвлення обох половин поля зору свідчить про однаковість концентрацій обох розчинів. Однаковості поля зору можна досягти, змінюючи товщину шару одного з розчинів. Концентрацію досліджуваного розчину обчислюють за формулою:

Cx = Cст*lст/lx

lx – lст – товщина шару розчину.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.