Здавалка
Главная | Обратная связь

Деформирование тела при малых деформациях.



Самым простым для понимания и математического анализа является деформирование тела при малых деформациях. Малая окрестность любой точки деформируется по одному и тому же правилу (закону): если малая окрестность точки M имела форму шара, то после деформации она становится эллипсоидом; аналогично, куб становится косым параллелепипедом (обычно говорят, что шар переходит в эллипсоид, а куб – в косой параллелепипед). Именно это обстоятельство одинаково во всех точках: эллипсоиды в разных точках, конечно, получаются разными и по-разному повернутыми. То же касается и параллелепипедов. [2] Физическая величина, равная отношению модуля силы упругости F , возникающей при деформации, к площади сечения S образца, перпендикулярного вектору силы F, называется механическим напряжением σ: σ=F/S. За единицу механического напряжения в СИ принята единица паскаль (Па): 1 Па=1 H/м2.

Модуль упругости. Деформация называется упругой, если после прекращения действия силы размеры и форма тела восстанавливаются. Неупругая деформация называется пластической. При малых (упругих) деформациях растяжения и сжатия отношение механического напряжения σ к относительному удлинению ε называется модулем упругости E (модулем Юнга). Эта величина одинакова для образцов любой формы и размеров, изготовленных из данного материала: E=σ/ε. Ε- относительная деформация тела ε= Δ l/l. Модуль упругости E характеризует механические свойства материала независимо от конструкции изготовленных из него деталей. Поскольку относительное удлинение – отвлечённое число, то модуль упругости выражается в тех же единицах, что и механическое напряжение. Зависимость относительного удлинения образца от приложенного к нему напряжения является одной из важнейших характеристик механических свойств твёрдых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси ординат откладывается механическое напряжение σ, приложенное к образцу, а по оси абсцисс – относительное удлинение ε

Рис.15. Диаграмма растяжения.

При небольших напряжениях относительное удлинение прямо пропорционально напряжению, а после снятия нагрузки размеры тела полностью восстанавливаются. Максимальное напряжение σn, при котором деформация ещё остаётся, называется пределом пропорциональности (точка А). Если ещё увеличить нагрузку, то деформация становится линейной, напряжение перестаёт быть прямо пропорциональным относительному удлинению. Тем не менее, при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ диаграммы). Максимальное напряжение, при котором ещё не возникают заметные остаточные деформации, называют пределом упругости σуп. Предел упругости превышает предел пропорциональности лишь на сотые доли процента. При напряжениях, превышающих предел упругости σуп, образец после снятия нагрузки не восстанавливает свою форму или первоначальные размеры. Такие деформации называют остаточными или пластическими .В области пластической деформации (участок ВС) деформация происходит не пропорционально увеличению напряжения. На горизонтальном участке CD материал «течёт» - деформация возрастает при неизменном напряжении. Напряжение σт (ордината точки C), при котором материал «течёт», называют пределом текучести. Если в области пластических деформаций снять напряжение с тела, то его размеры не будут равны первоначальным. Разгрузка изображается пунктирной кривой на диаграмме рисунка 15. У тела сохраняется остаточная деформация εост. Материалы, у которых область текучести CD значительна, могут без разрушения выдерживать большие деформации. Такие материалы называют пластичными. Пластичны пластилин, медь, золото. Если же область текучести материала почти отсутствует, он без разрушения может выдержать лишь небольшие деформации. Такие материалы называют хрупкими. Примерами хрупких материалов могут служить стекло, кирпич, бетон, чугун. Материал в процессе деформации может упрочниться. В этом можно убедиться при сгибании толстого медного прута или пластины. Для того чтобы разогнуть образец, требуются заметно большие усилия, чем для его сгибания. Это явление называется наклепом. После точки E кривая идёт вниз, это значит, что дальнейшая деформация вплоть до разрыва происходит при всё меньшем напряжении. Наибольшее напряжение σпч, которое способен выдержать образец без разрушения, называется пределом прочности.

Запас прочности. Для того чтобы машины и различные сооружения, здания, мосты были надёжными, при их проектировании конструкторы учитывают необходимый запас прочности. Очевидно, что все эти сооружения должны работать в области упругих деформаций. Коэффициентом безопасности (или запасом прочности) называется отношение предела пропорциональности σn данного материала к максимальному напряжению σд, которое будет испытывать деталь конструкции в работе: n=σn/σд. В зависимости от необходимой надёжности различных деталей и конструкций коэффициент безопасности выбирают обычно в пределах от 2 до 10.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.