Здавалка
Главная | Обратная связь

Питание одним насосом двух и несколько гидродвигателей



Многие гидросистемы имеют несколько гидродвигателей, питаемые от одного насоса. При такой схеме возможны два варианта подключения гидродвигателей.

Гидросистема с параллельным включением гидропривода показана на рис.10.10. Гидросистема имеет одну общую насосную станцию 1 и три гидроцилиндра 2, 3 и 4. Каждый из гидроцилиндров имеет собственное независимое устройство управления - гидрораспределители 6, 7 и 8. В точке 5 гидролиния имеет разветвление, в котором общая подача насосной станции 1 делится на три части Q1, Q2 и Q3 . Каждый из гидроцилиндров может включаться в работу в любой момент времени, независимо от других потребителей, и совершать как холостой, так и рабочий ход.

Рис.10.10. Гидросистема параллельным включением гидропривода

Гидросистема с последовательным включением гидропривода представлена на ри.10.11. Гидросистема имеет два гидроцилиндра 1 и 2, которые питаются от общей насосной станции 3. В отличие от гидросистемы с параллельным включением, гидроцилиндр 2 может осуществлять рабочий ход только при неработающем первом гидроцилиндре, поскольку при включении гидроцилиндра 1, напорная линия цилиндра 2 становится сливной, в которой давление падает. При этом цилиндр 2 может осуществлять только холостой ход.

Гидросистемы с параллельным включением гидропривода получили наибольшее распространение. Однако, показанная на рис.10.10 гидросхема имеет один существенный недостаток.

Рис.10.11. Гидросистема последовательным включением гидропривода

Рис.10.12. Гидросистема с двумя гидроцилиндрами, питаемыми
одним наосом через редукционные клапаны

Дело в том, что при включении всех трех гидроцилиндров скорость перемещения их выходных звеньев будет минимальна. Если отключить один из них, например первый (2), то скорость у второго и третьего возрастет, так как общая подача будет делиться только на Q2 и Q3. Чтобы этого избежать, в гидросистему необходимо включать редукционные клапаны.

На рис.10.12 представлена схема гидросистемы с одним насосом 3 и двумя силовыми цилиндрами 1 и 6, один из которых (цилиндр 6) рассчитан на работу при внешней нагрузке (давлении), значительно меньшей нагрузки второго цилиндра 1.

Для снижения давления в системе питания цилиндра 6 до требуемой величины применен редукционный клапан 4, установленный на входе в распределитель 5. Для цилиндра 1 также предусмотрен редукционный клапан 7, отрегулированный на рабочее давление в этом цилиндре. Редукционный клапан 7 также устанавливается на входе в распределитель 8, управляющий цилиндром 1. Насос 3 снабжен переливным клапаном 2, который сбрасывает излишек рабочей жидкости в бак.

Наверх страницы

Конец формы

 
   

 

 
 

 

 
 

 

 

 

 
   

 

 
Яндекс.Директ
 

 

 
 

 

 

 

 
     

 

Главная страница Содержание Введение Общая характеристика привода Рабочие жидкости для гидросистем. Гидравлические линии Насосы и гидромоторы Гидроцилиндры Гидрораспределители Регулирующая и направляющая аппаратура Вспомогательные устройства гидросистем Гидравлические следящие приводы (гидроусилители) Системы разгрузки насосов и регулирования гидродвигателей Системы типовых гидросистем Пневматический привод Монтаж и эксплуатация объемных гидроприводов Список литературы Пневматический привод   11.1. Общие сведения о применении газов в технике Любой объект, в котором используется газообразное вещество, можно отнести к газовым системам. Поскольку наиболее доступным газом является воздух, состоящий из смеси множества газов, то его широкое применение для выполнения различных процессов обусловлено самой природой. В переводе с греческого pneumatikos - воздушный, чем и объясняется этимологическое происхождение названия пневматические системы. В технической литературе часто используется более краткий термин - пневматика. Пневматические устройства начали применять еще в глубокой древности (ветряные двигатели, музыкальные инструменты, кузнечные меха и пр.), но самое широкое распространение они получили вследствие создания надежных источников пневматической энергии - нагнетателей, способных придавать газам необходимый запас потенциальной и (или) кинетической энергии. Пневматический привод, состоящий из комплекса устройств для приведения в действие машин и механизмов, является далеко не единственным направлением использования воздуха (в общем случае газа) в технике и жизнедеятельности человека. В подтверждение этого положения кратко рассмотрим основные виды пневматических систем, отличающихся как по назначению, так и по способу использования газообразного вещества. По наличию и причине движения газа все системы можно разделить на три группы. К первой группе отнесем системы с естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п. Ко второй группе отнесем системы с замкнутыми камерами, не сообщающимися с атмосферой, в которых может изменяться состояние газа вследствие изменения температуры, объема камеры, наддува или отсасывания газа. К ним относятся различные аккумулирующие емкости (пневмобаллоны), пневматические тормозные устройства (пневмобуферы), всевозможные эластичные надувные устройства, пневмогидравлические системы топливных баков летательных аппаратов и многие другие. Примером устройств с использованием вакуума в замкнутой камере могут быть пневмозахваты (пневмоприсоски), которые наиболее эффективны для перемещения штучных листовых изделий (бумага, металл, пластмасса и т.п.) в условиях автоматизированного и роботизированного производства. К третьей группе следует отнести такие системы, где используется энергия предварительно сжатого газа для выполнения различных работ. В таких системах газ перемещается по магистралям с относительно большой скоростью и обладает значительным запасом энергии. Они могут быть циркуляционными (замкнутыми) и бесциркуляционными. В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для повторного использования (как в гидроприводе). Применение систем весьма специфично, например, когда недопустимы утечки газа в окружающее пространство или невозможно применение воздуха из-за его окислительных свойств. Примеры таких систем можно найти в криогенной технике, где в качестве энергоносителя используются агрессивные, токсичные газы или летучие жидкости (аммиак, пропан, сероводород, гелий, фреоны и др.). В бесциркуляционных системах газ может быть использован потребителем как химический реагент (например, в сварочном производстве, в химической промышленности) или как источник пневматической энергии. В последнем случае в качестве энергоносителя обычно служит воздух. Выделяют три основных направления применения сжатого воздуха. К первому направлению относятся технологические процессы, где воздух выполняет непосредственно операции обдувки, осушки, распыления, охлаждения, вентиляции, очистки и т.п. Очень широкое распространение получили системы пневмотранспортирования по трубопроводам, особенно в легкой, пищевой, горнодобывающей отраслях промышленности. Штучные и кусковые материалы транспортируются в специальных сосудах (капсулах), а пылевидные в смеси с воздухом перемещаются на относительно большие расстояния аналогично текучим веществам. Второе направление - использование сжатого воздуха в пневматических системах управления (ПСУ) для автоматического управления технологическими процессами (системы пневмоавтоматики). Это направление получило интенсивное развитие с 60-х годов благодаря созданию универсальной системы элементов промышленной пневмоавтоматики (УСЭППА). Широкая номенклатура УСЭППА (пневматические датчики, переключатели, преобразователи, реле, логические элементы, усилители, струйные устройства, командоаппараты и т.д.) позволяет реализовать на ее базе релейные, аналоговые и аналого-релейные схемы, которые по своим параметрам близки к электротехническим системам. Благодаря высокой надежности они широко используются для циклового программного управления различными машинами, роботами в крупносерийном производстве, в системах управления движением мобильных объектов. Третьим направлением применения пневмоэнергии, наиболее масштабным по мощности, является пневматический привод, который в научном плане является одним из разделов обшей механики машин. У истоков теории пневматических систем стоял И.И. Артоболевский. Он был руководителем Института машиноведения (ИМАШ) в Ленинграде, где под его руководством в 40 - 60-х годах систематизировались и обобщались накопленные сведения по теории и проектированию пневмосистем. Одной из первых работ по теории пневмосистем была статья А.П. Германа "Применение сжатого воздуха в горном деле", опубликованная в 1933 г., где впервые движение рабочего органа пневмоустройства решается совместно с термодинамическим уравнением состояния параметров воздуха. Значительный вклад в теорию и практику пневмоприводов внесли ученые Б.Н. Бежанов, К.С. Борисенко, И.А. Бухарин, А.И. Вощинин, Е.В. Герц, Г.В. Крейнии, А.И. Кудрявцев, В.А. Марутов, В.И. Мостков, Ю.А. Цейтлин и другие. 11.2. Особенности пневматического привода, достоинства и недостатки Область и масштабы применения пневматического привода обусловлены его достоинствами и недостатками, вытекающими из особенностей свойств воздуха. В отличие от жидкостей, применяемых в гидроприводах, воздух, как и все газы, обладает высокой сжимаемостью и малой плотностью в исходном атмосферном состоянии (около 1,25 кг/м 3), значительно меньшей вязкостью и большей текучестью, причем его вязкость существенно возрастает при повышении температуры и давления. Отсутствие смазочных свойств воздуха и наличие некоторого количества водяного пара, который при интенсивных термодинамических процессах в изменяющихся объемах рабочих камер пневмомашин может конденсироваться на их рабочих поверхностях, препятствует использованию воздуха без придания ему дополнительных смазочных свойств и влагопонижения. В связи с этим в пневмоприводах имеется потребность кондиционирования воздуха, т.е. придания ему свойств, обеспечивающих работоспособность и продляющих срок службы элементов привода. С учетом вышеописанных отличительных особенностей воздуха рассмотрим достоинства пневмопривода в сравнении с его конкурентами - гидро- и электроприводом. 1. Простота конструкции и технического обслуживания. Изготовление деталей пневмомашин и пневмоаппаратов не требует такой высокой точности изготовления и герметизации соединений, как в гидроприводе, т.к. возможные утечки воздуха не столь существенно снижают эффективность работы и КПД системы. Внешние утечки воздуха экологически безвредны и относительно легко устраняются. Затраты на монтаж и обслуживание пневмопривода несколько меньше из-за отсутствия возвратных пневмолиний и применения в ряде случаев более гибких и дешевых пластмассовых или резиновых (резинотканевых) труб. В этом отношении пневмопривод не уступает электроприводу. Кроме того, пневмопривод не требует специальных материалов для изготовления деталей, таких как медь, алюминий и т.п., хотя в ряде случаев они используются исключительно для снижения веса или трения в подвижных элементах. 2. Пожаро- и взрывобезопасность. Благодаря этому достоинству пневмопривод не имеет конкурентов для механизации работ в условиях, опасных по воспламенению и взрыву газа и пыли, например в шахтах с обильным выделением метана, в некоторых химических производствах, на мукомольных предприятиях, т.е. там, где недопустимо искрообразование. Применение гидропривода в этих условиях возможно только при наличии централизованного источника питания с передачей гидроэнергии на относительно большое расстояние, что в большинстве случаев экономически нецелесообразно. 3. Надежность работы в широком диапазоне температур, в условиях пыльной и влажной окружающей среды. В таких условиях гидро- и электропривод требуют значительно больших затрат на эксплуатацию, т.к. при температурных перепадах нарушается герметичность гидросистем из-за изменения зазоров и изолирующих свойств электротехнических материалов, что в совокупности с пыльной, влажной и нередко агрессивной окружающей средой приводит к частым отказам. По этой причине пневмопривод является единственным надежным источником энергии для механизации работ в литейном и сварочном производстве, в кузнечно-прессовых цехах, в некоторых производствах по добыче и переработке сырья и др. Благодаря высокой надежности пневмопривод часто используется в тормозных системах мобильных и стационарных машин. 4. Значительно больший срок службы, чем гидро- и электропривода. Срок службы оценивают двумя показателями надежности: гамма-процентной наработкой на отказ и гамма-процентным ресурсом. Для пневматических устройств циклического действия ресурс составляет от 5 до 20 млн. циклов в зависимости от назначения и конструкции, а для устройств нециклического действия около 10-20 тыс. часов. Это в 2 - 4 раза больше, чем у гидропривода, и в 10-20 раз больше, чем у электропривода. 5. Высокое быстродействие. Здесь имеется в виду не скорость передачи сигнала (управляющего воздействия), а реализуемые скорости рабочих движений, обеспечиваемых высокими скоростями движения воздуха. Поступательное движение штока пневмоцилиндра возможно до 15 м/с и более, а частота вращения выходного вала некоторых пневмомоторов (пневмотурбин) до 100 000 об/мин. Это достоинство в полной мере реализуется в приводах циклического действия, особенно для высокопроизводительного оборудования, например в манипуляторах, прессах, машинах точечной сварки, в тормозных и фиксирующих устройствах, причем увеличение количества одновременно срабатывающих пневмоцилиндров (например в многоместных приспособлениях для зажима деталей) практически не снижает время срабатывания. Большая скорость вращательного движения используется в приводах сепараторов, центрифуг, шлифовальных машин, бормашин и др. Реализация больших скоростей в гидроприводе и электроприводе ограничивается их большей инерционностью (масса жидкости и инерция роторов) и отсутствием демпфирующего эффекта, которым обладает воздух. 6. Возможность передачи пневмоэнергии на относительно большие расстояния по магистральным трубопроводам и снабжение сжатым воздухом многих потребителей. В этом отношении пневмопривод уступает электроприводу, но значительно превосходит гидропривод, благодаря меньшим потерям напора в протяженных магистральных линиях. Электрическая энергия может передаваться по линиям электропередач на многие сотни и тысячи километров без ощутимых потерь, а расстояние передачи пневмоэнергии экономически целесообразно до нескольких десятков километров, что реализуется в пневмосистемах крупных горных и промышленных предприятий с централизованным питанием от компрессорной станции. Известен опыт создания городской компрессорной станции в 1888 г. одним из промышленников в Париже. Она снабжала заводы и фабрики по магистралям протяженностью 48 км при давлении 0,6 МПа и имела мощность до 18500 кВт. С появлением надежных электропередач ее эксплуатация стала невыгодной. Максимальная протяженность гидросистем составляет около 250-300 м в механизированных комплексах шахт для добычи угля, причем в них используется обычно менее вязкая водно-масляная эмульсия. 7. Отсутствие необходимости в защитных устройствах от перегрузки давлением у потребителей. Требуемый предел давления воздуха устанавливается общим предохранительным клапаном, находящимся на источниках пневмоэнергии. Пневмодвигатели могут быть полностью заторможены без опасности повреждения и находиться в этом состоянии длительное время. 8. Безопасность для обслуживающего персонала при соблюдении общих правил, исключающих механический травматизм. В гидро- и электроприводах возможно поражение электрическим током или жидкостью при нарушении изоляции или разгерметизации трубопроводов. 9. Улучшение проветривания рабочего пространства за счет отработанного воздуха. Это свойство особенно полезно в горных выработках и помещениях химических и металлообрабатывающих производств. 10. Нечувствительность к радиационному и электромагнитному излучению. В таких условиях электрогидравлические системы практически непригодны. Это достоинство широко используется в системах управления космической, военной техникой, в атомных реакторах и т.п. Несмотря на вышеописанные достоинства, применяемость пневмопривода ограничивается в основном экономическими соображениями из-за больших потерь энергии в компрессорах и пневмодвигателях, а также других недостатков, описанных ниже. 1. Высокая стоимость пневмоэнергии. Если гидро- и электропривод имеют КПД, соответственно, около 70 % и 90 %, то КПД пневмопривода обычно 5-15 % и очень редко до 30 %. Во многих случаях КПД может быть 1 % и менее. По этой причине пневмопривод не применяется в машинах с длительным режимом работы и большой мощности, кроме условий, исключающих применение электроэнергии (например, горнодобывающие машины в шахтах, опасных по газу). 2. Относительно большой вес и габариты пневмомашин из-за низкого рабочего давления. Если удельный вес гидромашин, приходящийся на единицу мощности, в 5-10 раз меньше веса электромашин, то пневмомашины имеют примерно такой же вес и габариты, как последние. 3. Трудность обеспечения стабильной скорости движения выходного звена при переменной внешней нагрузке и его фиксации в промежуточном положении. Вместе с тем мягкие механические характеристики пневмопривода в некоторых случаях являются и его достоинством. 4. Высокий уровень шума, достигающий 95-130 дБ при отсутствии средств для его снижения. Наиболее шумными являются поршневые компрессоры и пневмодвигатели, особенно пневмомолоты и другие механизмы ударно- циклического действия. Наиболее шумные гидроприводы (к ним относятся приводы с шестеренными машинами) создают шум на уровне 85-104 дБ, а обычно уровень шума значительно ниже, примерно как у электромашин, что позволяет работать без специальных средств шумопонижения. 5. Малая скорость передачи сигнала (управляющего импульса), что приводит к запаздыванию выполнения операций. Скорость прохождения сигнала равна скорости звука и, в зависимости от давления воздуха, составляет примерно от 150 до 360 м/с. В гидроприводе и электроприводе, соответственно, около 1000 и 300 000 м/с. Перечисленные недостатки могут быть устранены применением комбинированных пневмоэлектрических или пневмогидравлических приводов. 11.3. Течение воздуха Инженерные расчеты пневмосистем сводятся к определению скоростей и расходов воздуха при наполнении и опорожнении резервуаров (рабочих камер двигателей), а также с его течением по трубопроводам через местные сопротивления. Вследствие сжимаемости воздуха эти расчеты значительно сложнее, чем расчеты гидравлических систем, и в полной мере выполняются только для особо ответственных случаев. Полное описание процессов течения воздуха можно найти в специальных курсах газодинамики. Основные закономерности течения воздуха (газа) такие же, как и для жидкостей, т.е. имеют место ламинарный и турбулентный режимы течения, установившийся и неустановившийся характер течения, равномерное и неравномерное течение из-за переменного сечения трубопровода и все остальные кинематические и динамические характеристики потоков. Вследствие низкой вязкости воздуха и относительно больших скоростей режим течения в большинстве случаев турбулентный. Для промышленных пневмоприводов достаточно знать закономерности установившегося характера течения воздуха. В зависимости от интенсивности теплообмена с окружающей средой расчеты параметров воздуха выполняются с учетом вида термодинамического процесса, который может быть от изотермического (с полным теплообменом и выполнением условия Т = const) до адиабатического (без теплообмена). При больших скоростях исполнительных механизмов и течении газа через сопротивления процесс сжатия считается адиабатическим с показателем адиабаты k = 1,4. В практических расчетах показатель адиабаты заменяют на показатель политропы (обычно принимают n = 1,3…1,35), что позволяет учесть потери, обусловленные трением воздуха, и возможный теплообмен. В реальных условиях неизбежно происходит некоторый теплообмен между воздухом и деталями системы и имеет место так называемое политропное изменение состояния воздуха. Весь диапазон реальных процессов описывается уравнениями этого состояния pVn = const где n - показатель политропы, изменяющийся в пределах от n = 1 (изотермический процесс) до n = 1,4 (адиабатический процесс). В основу расчетов течения воздуха положено известное уравнение Бернулли движения идеального газа Слагаемые уравнения выражаются в единицах давления, поэтому их часто называют "давлениями": z - весовое давление; p - статическое давление; - скоростное или динамическое давление. На практике часто весовым давлением пренебрегают и уравнение Бернулли принимает следующий вид Сумму статического и динамического давлений называют полным давлением P0. Таким образом, получим При расчете газовых систем необходимо иметь в виду два принципиальных отличия от расчета гидросистем. Первое отличие заключается в том, что определяется не объемный расход воздуха, а массовый. Это позволяет унифицировать и сравнивать параметры различных элементов пневмосистем по стандартному воздуху (ρ = 1,25 кг/ м3, υ = 14,9 м2/с при p = 101,3 кПа и t = 20°C). В этом случае уравнение расходов записывается в виде Qм1 = Qм2 или υ1V1S1 = υ2V2S2 Второе отличие заключается в том, что при сверхзвуковых скоростях течения воздуха изменяется характер зависимости расхода от перепада давлений на сопротивлении. В связи с этим существуют понятия подкритического и надкритического режимов течения воздуха. Смысл этих терминов поясняется ниже. Рассмотри истечение газа из резервуара через небольшое отверстие при поддержании в резервуаре постоянного давления (рис.11.1). Будем считать, что размеры резервуара настолько велики по сравнению с размерами выходного отверстия, что можно полностью пренебрегать скоростью движения газа внутри резервуара, и, следовательно, давление, температура и плотность газа внутри резервуара будут иметь значения p0, ρ 0 и T0. Рис.11.1. Истечение газа из отверстия в тонкой стенке Скорость истечения газа можно определять по формуле для истечения несжимаемой жидкости, т.е. Массовый расход газа, вытекающего через отверстие, определяем по формуле где ω0 - площадь сечения отверстия. Отношение p/p0 называется степенью расширения газа. Анализ формулы (11.7) показывает, что выражение, стоящее под корнем в квадратных скобках, обращается в ноль при p/p0 = 1 и p/ p0 = 0. Это означает, что при некотором значении отношения давлений массовый расход достигает максимума Qmax. График зависимости массового расхода газа от отношения давлений p/p0 показан на рис.11.2. Рис.11.2. Зависимость массового расхода газа от отношения давлений Отношение давлений p/p0, при котором массовый расход достигает максимального значения, называется критическим. Можно показать, что критическое отношение давлений равно Как видно из графика, показанного на рис.11.2, при уменьшении p/p0 по сравнению с критическим расход должен уменьшаться (пунктирная линия) и при p/p0 = 0 значение расхода должно быть равно нулю (Qm = 0). Однако в действительности это не происходит. В действительности при заданных параметрах p0, ρ0 и T0 расход и скорость истечения будут расти с уменьшением давления вне резервуара p до тех пор, пока это давление меньше критического. При достижении давлением p критического значения расход становится максимальным, а скорость истечения достигает критического значения, равного местной скорости звука. Критическая скорость определяется известной формулой После того, как на выходе из отверстия скорость достигла скорости звука, дальнейшее уменьшение противодавления p не может привести к увеличению скорости истечения, так как, согласно теории распространения малых возмущений, внутренний объем резервуара станет недоступен для внешних возмущений: он будет "заперт" потоком со звуковой скоростью. Все внешние малые возмущения не могут проникнуть в резервуар, так как им будет препятствовать поток, имеющий ту же скорость, что и скорость распространения возмущений. При этом расход не будет меняться, оставаясь максимальным, а кривая расхода примет вид горизонтальной линии. Таким образом, существует две зоны (области) течения: подкритический режим, при котором надкритический режим, при котором В надкритической зоне имеет место максимальная скорость и расход, соответствующие критическому расширению газа. Исходя из этого при определении расходов воздуха предварительно определяют по перепаду давления режим истечения (зону), а затем расход. Потери на трение воздуха учитывают коэффициентом расхода μ, который с достаточной точностью можно вычислить по формулам для несжимаемой жидкости (μ = 0,1...0,6). Окончательно скорость и максимальный массовый расход в подкритической зоне, с учетом сжатия струи определятся по формулам 11.4. Подготовка сжатого воздуха В промышленности используются различные конструкции машин для подачи воздуха под общим названием воздуходувки. При создании избыточного давления до 0,015 МПа они называются вентиляторами, а при давлении свыше 0,115 МПа - компрессорами. Вентиляторы относятся к лопастным машинам динамического действия и кроме своего основного назначения - проветривания - применяются в пневмотранспортных системах и низконапорных системах пневмоавтоматики. В пневмоприводах источником энергии служат компрессоры с рабочим давлением в диапазоне 0,4…1,0 МПа. Они могут быть объемного (чаще поршневые) или динамического (лопастные) действия. Теория работы компрессоров изучается в специальных дисциплинах. По виду источника и способу доставки пневмоэнергии различают магистральный, компрессорный и аккумуляторный пневмопривод. Магистральный пневмопривод характеризуется разветвленной сетью стационарных пневмолиний, соединяющих компрессорную станцию с цеховыми, участковыми потребителями в пределах одного или нескольких предприятий. Компрессорная станция оборудуется несколькими компрессорными линиями, обеспечивающими гарантированное снабжение потребителей сжатого воздуха с учетом возможной неравномерной работы последних. Это достигается установкой промежуточных накопителей пневмоэнергии (ресиверов) как на самой станции, так и на участках. Пневмолинии обычно резервируются, чем обеспечивается удобство их обслуживания и ремонта. Типовой комплект устройств, входящих в систему подготовки воздуха, показан на принципиальной схеме компрессорной станции (рис.11.3). Рис.11.3. Принципиальная схема компрессорной станции Компрессор 2 с приводным двигателем 3 всасывает воздух из атмосферы через заборный фильтр 1 и нагнетает в ресивер 7 через обратный клапан 4, охладитель 5 и фильтр-влагоотделитель 6. В результате охлаждения воздуха водяным охладителем 5 происходит конденсация 70-80 % содержащейся в воздухе влаги, улавливаемой фильтром- влагоотделителем и со 100-процентной относительной влажностью воздух поступает в ресивер 7, который аккумулирует пневмоэнергию и сглаживает пульсацию давления. В нем происходит дальнейшее охлаждение воздуха и конденсация некоторого количества влаги, которая по мере накопления удаляется вместе с механическими примесями через вентиль 10. Ресивер обязательно оборудуется одним или несколькими предохранительными клапанами 8 и манометром 9. Из ресивера воздух отводится к пневмолиниям 12 через краны 11. Обратный клапан 4 исключает возможность резкого падения давления в пневмосети при отключении компрессора. Компрессорный пневмопривод отличается от вышеописанного магистрального своей мобильностью и ограниченностью числа одновременно работающих потребителей. Передвижные компрессоры наиболее широко используются при выполнении различных видов строительных и ремонтных работ. По комплекту устройств, входящих в систему подготовки воздуха, он практически не отличается от вышеописанной компрессорной станции (водяной охладитель заменяется на воздушный). Подача воздуха к потребителям осуществляется через резинотканевые рукава. Аккумуляторный пневмопривод ввиду ограниченного запаса сжатого воздуха в промышленности применяется редко, но широко используется в автономных системах управления механизмов с заданным временем действия. На рис.11.4 показаны несколько примеров аккумуляторного питания пневмосистем. Для бесперебойной подачи жидкости в гидросистему или топлива в двигатели внутреннего сгорания аппаратов с переменной ориентацией в пространстве применяется наддув бака с жидкостью (рис.11.4, а) от пневмобаллона 1. Вытеснение жидкости из бака 5, разделенного мембраной на две части, обеспечивается постоянным давлением воздуха, зависящим от настройки редукционного клапана 3 при включении электровентиля 2. Предельное давление ограничивается клапаном 4. Система ориентации летательного аппарата (рис.11.4, б) состоит из управляющих реактивных пневмодвигателей 4, питающихся от шарового пневмобаллона 1 через редукционный клапан 2 и электровентили 3. Рис.11.4. Принципиальные схемы аккумуляторного питания пневмосистем (а, б, в) и замкнутой пневмосистемы (г) Для питания систем промышленной пневмоавтоматики часто используется не только средний (нормальный) диапазон давления воздуха (0,118…0,175 МПа), а и низкий диапазон (0,0012…0,005 МПа). Это позволяет уменьшить расход сжатого воздуха, увеличить проходное сечение элементов и, следовательно, снизить вероятность засорения дросселирующих устройств, а в некоторых случаях получить ламинарный режим течения воздуха с линейной зависимостью Q = f(Δp), что весьма важно в устройствах пневмоавтоматики. При наличии источника высокого давления можно обеспечить питание пневмосистемы низкого давления с большим расходом воздуха при помощи эжектора (рис.11.4, в). От пневмобаллона высокого давления 1, оборудованного редукционным клапаном 4, манометром 2 и зарядным клапаном 3 воздух поступает на питающее сопло 5 эжектора. При этом внутри корпуса эжектора создается пониженное давление, и из окружающей среды через фильтр 6 подсасывается воздух, который поступает в приемное сопло 7 большего диаметра. После эжектора воздух вторично очищается от пыли фильтром 8 и поступает к устройствам 10 пневмоавтоматики. Манометром 9 контролируется рабочее давление, величина которого может корректироваться редуктором 4. Все вышеописанные пневмосистемы относятся к разомкнутым (бесциркуляционным). На рис.11.4, г показана замкнутая схема питания системы пневмоавтоматики, используемая в условиях пыльной атмосферы. Подача воздуха к блоку пневмоавтоматики 3 осуществляется вентилятором 1 через фильтр 2, причем всасывающий канал вентилятора соединен с внутренней полостью герметичного кожуха блока 3, которая одновременно через фильтр тонкой очистки 4 сообщается с атмосферой. Часто в качестве вентилятора используются бытовые электропылесосы, способные создавать давление до 0,002 МПа. Воздух, поступающий к потребителям, должен быть очищен от механических загрязнений и содержать минимум влаги. Для этого служат фильтры-влагоотделители, у которых в качестве фильтрующего элемента обычно используется ткань, картон, войлок, металлокерамика и другие пористые материалы с тонкостью фильтрации от 5 до 60 мкм. Для более глубокой осушки воздуха его пропускают через адсорбенты, поглощающие влагу. Чаще всего для этого используется силикагель. В обычных пневмоприводах достаточную осушку обеспечивают ресиверы и фильтры- влагоотделители, но вместе с тем воздуху необходимо придавать смазочные свойства, для чего служат маслораспылители фитильного или эжекторного типа. Рис.11.5. Типовой узел подготовки воздуха: а - принципиальная схема; б - условное обозначение На рис.11.5 показан типовой узел подготовки воздуха, состоящий из фильтра-влагоотделителя 1, редукционного клапана 2 и маслораспылителя 3. Поступающий на вход фильтра воздух получает вращательное движение за счет неподвижной крыльчатки . Центробежной силой частицы влаги и механических примесей отбрасываются к стенке прозрачного корпуса и оседают в его нижнюю часть, откуда по мере необходимости удаляются через сливной кран. Вторичная очистка воздуха происходит в пористом фильтре Ф, после которого он поступает на вход редуктора, где происходит дросселирование через зазор клапана Кл, величина которого зависит от выходного давления над мембраной М. Увеличение усилия сжатия пружины П обеспечивает увеличение зазора клапана Кл и, следовательно, выходного давления. Корпус маслораспылителя 3 делается прозрачным и заполняется через пробку смазочным маслом. Создаваемое на поверхности масла давление вытесняет его через трубку T вверх к соплу С, где масло эжектируется и распыляется потоком воздуха. В маслораспылителях фитильного типа вместо трубки Т установлен фитиль, по которому масло поступает в распылительное сопло за счет капиллярного эффекта. 11.5. Исполнительные пневматические устройства Исполнительными устройствами пневмоприводов называются различные механизмы, обеспечивающие преобразование избыточного давления воздуха или вакуума в рабочее усилие. Если при этом рабочий орган совершает движение относительно пневмоустройства, то он называется пневмодвигателем, а если движения нет или оно происходит совместно с пневмоустройством, то оно называется пневмоприжимом или пневмозахватом. Пневмодвигатели могут быть, как и гидродвигатели, вращательного или поступательного действия и называются, соответственно, пневмомоторами и пневмоцилиндрами. Конструктивное исполнение этих устройств во многом похоже на их гидравлические аналоги. Наибольшее применение получили шестеренные, пластинчатые и радиально-поршневые пневмомоторы объемного действия. На рис.11.6, а показана схема радиально- поршневого мотора с передачей крутящего момента на вал через кривошипно-шатунный механизм. В корпусе 1 симметрично расположены цилиндры 2 с поршнями 3. Усилие от поршней передается на коленчатый вал 5 через шатуны 4, прикрепленные шарнирно к поршням и кривошипу коленчатого вала. Сжатый воздух подводится к рабочим камерам по каналам 8, которые поочередно сообщаются с впускным Вп и выхлопным Вх каналами распределительного золотника 6, вращающегося синхронно с валом мотора. Золотник вращается в корпусе распределительного устройства 7, к которому подведены магистрали впуска и выхлопа воздуха. Радиально-поршневые пневмомоторы являются относительно тихоходными машинами с частотой вращения вала до 1000…1500 об/мин. Более быстроходны шестеренные и пластинчатые моторы (2000…4000 об/мин), но самыми быстроходными (до 20000 об/мин и более) могут быть турбинные пневмомоторы, в которых используется кинетическая энергия потока сжатого воздуха. В частности, такие моторы используются для вращения рабочих колес вентиляторов на горных предприятиях. Рис.11.6. Схемы пневмомоторов объемного (а) и динамического (б) действия На рис.11.6, б показана схема пневмопривода колеса вентилятора, состоящего из ступицы 9 с лопаток 10, к которым жестко прикреплен вращающийся обод с лопатками пневмомотора 11. Поток сжатого воздуха, вытекающий из сопла 12 по касательной к изогнутым лопаткам 11, отдает свою энергию и заставляет вращаться колесо вентилятора с большой скоростью. Описанное устройство можно назвать пневмопреобразователем, преобразующим поток воздуха высокого давления в поток низкого давления с гораздо большим расходом. Пневмопривод отличается большим разнообразием оригинальных исполнительных устройств с эластичными элементами в форме мембран, оболочек, гибких нитей, рукавов и т.н. Они широко используются в зажимных, фиксирующих, переключающих и тормозных механизмах современных автоматизированных производств. К ним относятся мембранные и сильфонные пневмоцилиндры с относительно малой величиной рабочего хода штока. Плоская резиновая мембрана позволяет получить перемещение штока на 0,1...0,5 от ее эффективного диаметра. При выполнении мембраны в форме гофрированного чулка рабочий ход увеличивается до нескольких диаметров мембраны. Такие пневмоцилиндры называются сильфонными. Они могут быть с внешним и внутренним подводом воздуха. В первом случае длина гофрированной трубки под действием давления уменьшается, во втором увеличивается за счет деформации гофров. В качестве эластичного элемента применяется резина, резинотканевые и синтетические материалы, а также тонколистовая сталь, бронза, латунь. Увеличение скорости выполнения операций во многих случаях достигается применением пневмозахватов, схемы которых показаны на рис.11.7. Для перемещения листовых изделий используются пневмоприсоски, относящиеся к вакуумным захватам безнасосного и насосного типа. В захватах безнасосного типа (рис.11.7, а) вакуум в рабочей камере К создается при деформации самих элементов захвата, выполненных в виде гибкой тарелки, прилегающей своей кромкой к детали и подвижным поршнем, к которому прикладывается внешнее усилие. Величина вакуума при подъеме детали пропорциональна ее весу и обычно бывает не более 55 кПа. Для обеспечения лучшего притяжения, особенно для недостаточно гладкой поверхности детали, применяют захваты насосного типа, у которых воздух из рабочей камеры отсасывается насосом до глубины вакуума 70…95 кПа. Часто применяют простые устройства эжекторного типа (рис.11.7, б), в которых кинетическая энергия струи жидкости, пара или воздуха используется для отсасывания воздуха из рабочей камеры К, находящейся между присоской П и деталью. Сжатый воздух, поступающий на вход А, проходит с большой скоростью через сопло Б эжектора и создает пониженное давление в камере В и канале Г, сообщающимся с рабочей камерой К. Рис.11.7. Схемы пневмозахватов Для зажима деталей цилиндрической формы применяют пневмозахваты, выполненные по схемам в и г (рис.11.7). При подводе воздуха в рабочую камеру К упругий цилиндрический колпачок охватывает шейку вала и создает усилие, достаточное для его зажима. На схеме г показан двухсторонний пневмозахват, рабочими элементами которого служат сильфоны с односторонним гофром. При создании избыточного давления внутри сильфона гофрированная сторона растягивается на большую длину, чем гладкая, что вызывает перемещение незакрепленной (консольной) стороны трубки в направлении охватываемой детали. Такими устройствами можно фиксировать детали не только круглой формы, но и с любыми фасонными поверхностями. В ряде случаев возникает потребность в перемещении рабочих органов на большие расстояния до 10…20 м и более по прямолинейной или искривленной траектории. Применение обычных штоковых пневмоцилиндров ограничено рабочим ходом до 2 м. Конструкции бесштоковых пневмоцилиндров, удовлетворяющих этим требованиям, показаны на рис.11.8. Рис.11.8. Схемы бесштоковых пневмодвигателей поступательного движения Отсутствие жесткого штока позволяет практически в два раза уменьшить длину цилиндра в выдвинутом положении. На схеме а показан длинноходовой пневмоцилиндр с передачей усилия через сильный постоянный магнит. Абсолютно герметичная гильза цилиндра выполнена из немагнитного материала, а ее внутренняя полость разделяется поршнем на две камеры, к которым подводится сжатый воздух. В поршне и каретке К, соединенной с рабочим органом, встроены противоположные полюса магнита S и N, взаимодействие которых обеспечивает передачу движущего усилия на каретку, скользящую по направляющим на внешней поверхности гильзы. Ход каретки ограничивается конечными упорами У. Практически неограниченную длину хода имеют пневмоцилиндры с эластичной гильзой (рис.11.8, б), охватываемой двумя роликами, соединенными кареткой К. Такие пневмоцилиндры очень эффективны для перемещения штучных грузов по сложной траектории и в приводах с небольшими рабочими усилиями. Пневмоцилиндр с гибким штоком показан на схеме рис.11.8, в. В такой конструкции тяговое усилие передается на каретку К от поршня через гибкий элемент (обычно стальной трос, облицованный эластичной пластмассой), охватывающий обводной и натяжной ролики, расположенные на крышках цилиндра. Наверх страницы

Конец формы

 
   

 

 
 

 

 
 

 

 

 

 
   

 

 
Яндекс.Директ
 

 

 
 

 

 

 

 
     

 

Главная страница Содержание Введение Общая характеристика привода Рабочие жидкости для гидросистем. Гидравлические линии Насосы и гидромоторы Гидроцилиндры Гидрораспределители Регулирующая и направляющая аппаратура Вспомогательные устройства гидросистем Гидравлические следящие приводы (гидроусилители) Системы разгрузки насосов и регулирования гидродвигателей Системы типовых гидросистем Пневматический привод Монтаж и эксплуатация объемных гидроприводов Список литературы Монтаж и эксплуатация объемных гидроприводов   12.1. Монтаж объемных гидроприводов Требования к установке гидроагрегатов. Установка гидроагрегатов должна осуществляться обеспечением удобного доступа к узлам и элементам. Замена агрегатов не должна вызывать необходимости демонтажа соседних узлов и элементов гидропривода. Гидромашины не должны воспринимать нагрузок от веса присоединительных трубопроводов или усилий, возникающих вследствие упругой деформации трубопроводов. Во всасывающей гидролинии насосов должен обеспечиваться необходимый подпор рабочей жидкости. Диаметр всасывающего трубопровода должен быть не меньше условного прохода всасывающего отверстия насоса. Скорость течения рабочей жидкости во всасывающем трубопроводе не должна превышать 1,2 м/с. Всасывающий трубопровод должен обладать минимально возможным сопротивлением. Допустимое разрежение во всасывающем трубопрводе 0,02…0,025 МПа. Сливной трубопровод в гидроприводах с разомкнутой циркляцией рабочей жидкости, а также в насосах подпитки должен иметь размеры, обеспечивающие перемещения рабочей жидкости в нем со скоростью, не превышающей скорость ее движения во всасывающем трубопроводе. В противном случае при сливе в гидробаке образуется масляная эмульсия (смесь масла и воздуха). Сливная труба должна погружаться в масло, иметь скос по углом 45 ; минимальное расстояние от дна бака до трубы должно составлять 2,5 наружного диаметра сливной трубы. Дренажные отверстия на корпусах гидромашин должны располагаться в верхнем положении для исключения образования камер, заполненных воздухом. При значительной длине дренажного трубопровода его сечение необходимо увеличивать во избежание повышения давления внутри корпуса гидромашины. Соединение гидроагрегатов выполняется с помощью стальных трубопроводов или резинометаллических рукавов. Основные требования к монтажу гибких рукавов следующие: рукав должен висеть не перегибаясь в месте заделки; резкие изгибы и скручивание не допускаются; при работе не должно быть трения рукавов одного об другой и о детали конструкции; длина прямого участка рукава около присоединительной арматуры - не менее шести наружных его диаметров. В самой высокой точке трубопровода должно находиться устройство для удаления воздуха. Сборка и установка гидроагрегатов. Монтаж объемного гидропривода необходимо начинать с проверки наличия всех комплектующих узлов и деталей. Убедившись в исправности, приступают к монтажу гидроагрегатов, гидромашин, гидроаппаратуры, соединительных трубопроводов и контрольно-измерительных приборов. Затем монтируют системы управления, охлаждения и т.п. Все отверстия для подвода и отвода рабочей жидкости должны быть закрыты соответствующими заглушками. Трубопроводы тщательно очищаются, а их внутренние поверхности протравливаются. Затем трубы промываются в специальных промывочных ваннах, просушиваются сжатым воздухом и закупориваются до установки на машину. Перед монтажом трубопроводы должны быть испытаны на давление, превышающее максимальное рабочее в 2 раза. Особое внимание необходимо уделять правильному монтажу уплотнительных устройств. На поверхности деталей, сопрягаемых с уплотнением не допускаются риски, забоины, сколы, заусенцы и другие дефекты. Размеры и чистота сопряженных поверхностей должны соответствовать требованиям нормативно-технической документации. Перед установкой уплотнение, а также поверхности деталей, сопрягаемых с уплотнением, протирают безворсовым тампоном, смоченным в бензине. Затем их сушат при комнатной температуре до полного испарения бензина и смазывают рабочей жидкостью или смазочным материалом, инертным к материалу уплотнений. Не допускается перекос уплотнительного узла, чрезмерное растяжение, скручивание и механическое повреждение уплотнений. В случае отсутствия заходных фасок на уплотняемых деталях или при монтаже уплотнений на детали, имеющие неровности и ступенчатую форму, применяют специальные монтажные оправки. Монтаж и демонтаж узлов и элементов объемного гидропривода проводят в соответствии с инструкцией по его эксплуатации. Заправка гидросистемы рабочей жидкостью. По окончании монтажных работ в гидросистему заливают рабочую жидкость требуемой марки и в нужном объеме. Содержание воды в ней не допускается. Очистка от механических примесей проводится на специальных установках. Рабочая жидкость фильтруется. Тонкость фильтрации не должна быть больше той, которая обеспечивается самым "тонким" фильтром, установленным в гидросистеме. Надежность гидропривода напрямую зависит от чистоты рабочей жидкости, поэтому при заправке необходимо предохранять масло от загрязнений на различных технологических этапах. Заправка должна проводиться заправочными станциями с ручным или механизированным приводом. Преимуществом заправочных станций является наличие резервуара, предохраняющего масло от загрязнения в процессе транспортирования, хранения и заливки, приемных и напорных фильтров тонкой очистки, обеспечивающих необходимую тонкость фильтрации при заправке. Заправка объемного гидропривода делится на три этапа. На первом масло заливается в корпус гидромашины, а воздух удаляется дренажной системой. Для этого производится подача рабочей жидкости через монтажный трубопровод в нижнюю дренажную точку гидропривода. По мере поступления рабочей жидкости воздух через верхнюю дренажную точку вытесняется в гидробак. На втором этапе осуществляется заливка рабочей жидкости в гидробак до верхнего уровня. На третьем этапе заправляется гидросистема. При этом проводят пробные пуски объемного гидропривода на холостых режимах при минимальной частоте вращения приводного вала. Пробные пуски мобильных машин производят с перерывами в течении 15 с при помощи стартера. Контроль за наполнением гидросистемы осуществляется по понижению уровня масла в гидробаке. После заполнения приводной двигатель запускается на холостых режимах в течении 3…5 мин, после чего производится дозаправка до нужного уровня рабочей жидкости по метке на указателе гидробака. 12.2. Эксплуатация объемных гидроприводов в условиях низких температур Нижнее допустимое значение температуры воздуха, регламентируемое ГОСТом для гидрооборудования, предназначенного для эксплуатации в районах с холодным климатом составляет -60 С. Эксплуатационная надежность гидропривода обеспечивается за счет: комплекса дополнительных мер, которые осуществляются при изготовлении, установке и эксплуатации узлов и элементов; применения соответствующих конструкционных материалов (сталей) и их дополнительной термообработки для повышения прочности и износостойкости деталей; повышения чистоты обработки основных деталей, рационального выбора допуска и посадок, уменьшения концентрации напряжений; предотвращения хрупкого разрушения сварных узлов и соединений путем совершенствования методов их конструирования и технологии изготовления; использования для уплотнительных элементов соответствующих резин; применения рабочих жидкостей, сохраняющих необходимые рабочие свойства при низких температурах; снижения потерь давления рабочей жидкости в гидролиниях всасывания, нагнетания и дренажа; использования устройств для подготовки и подогрева рабочей жидкости перед началом запуска; выбора оптимальных режимов запуска гидропривода. Необходимо обеспечивать принудительную подпитку насоса или устанавливать его непосредственно в гидробаке. Рекомендуется также устанавливать насосы так, чтобы всасывающее отверстие насоса было расположено ниже наименьшего уровня масла в гидробаке не менее чем на 500 мм. При работе в режиме самовсасывания рабочей жидкости всасывающую гидролинию следует делать как можно короче; запрещается помещать в ней фильтры и другие элементы, способствующие увеличению сопротивления проходу рабочей жидкости. Необходимо тщательно следить за герметичностью всасывающего трубопровода. Особое внимание должно уделяться очистке рабочей жидкости от загрязнений. Фильтры рекомендуется устанавливать на сливной магистрали. Пропускная способность их должна быть вдвое большей, чем фильтров в нормальных условиях эксплуатации. В гидросистеме необходимо предусматривать перепускные клапаны. Гидробаки должны иметь отстойники для сбора воды и устройства для слива конденсата. Во избежание попадания конденсата в гидросистему гидропривод полностью заполняется маслом, а для компенсации объемных изменений жидкости в процессе работы привода устанавливаются эластичные компенсаторы. В противном случае сообщение гидробака с атмосферой должно осуществляться через устройства, полностью исключающие попадания воды в рабочую жидкость. В гидроприводах, работающих в условиях холодного климата, при пуске и в начальный период работы значительно возрастают потери давления в трубопроводах. При -50…-60 С потери давления рабочей жидкости в гидролиниях привода могут возрастать в 15…20 раз по сравнению с потерями давления при +50 С. Для уменьшения потерь давления в трубопроводах необходимо обеспечить минимальную протяженность трубопроводов, сократить число изгибов, соединений, переходов и т.п. Допустимая скорость рабочей жидкости во всасывающем трубопроводе - 0,85 м/с, в сливном - 1,4 м/с, в нагнетательном при номинальном давлении 32 МПа - 5 м/с. Для сокращения времени выхода на установившийся тепловой режим целесообразно предусматривать теплоизоляцию гидробаков и трубопроводов. С этой же целью в гидроприводах можно применять устройства для подогрева рабочей жидкости в период пуска. Рекомендуется это делать в течение 20…30 мин. В гидравлической системе привода подогрев рабочей жидкости в период пуска обеспечивается путем пропускания всей подаваемой насосом рабочей жидкости через предохранительный клапан при номинальном рабочем давлении. Пуск насосов в условиях низких температур должен производиться при постепенном повышении давления рабочей жидкости до номинального с выдержкой при давлении 10 МПа в течение 1…2 мин. Для облегчения запуска приводного двигателя и во избежание выхода из строя насоса его привод рекомендуется осуществлять через разъединительные муфты (желательно фрикционные). При отсутствии конструктивной возможности применения разъединительных муфт необходимо ограничить частоту вращения вала при запуске для аксиально- поршневых гидронасосов до 1000 об/мин, шестеренных - до 1500 об/мин. В гидроприводах с замкнутой циркуляцией предусматривается автоматическое ограничение мощности насоса. 12.3. Основные неполадки в гидросистемах и способы их устранения При эксплуатации гидропривода ввиду сложности конструкции многих его элементов, неизбежно возникают различного рода неисправности, которые необходимо вовремя определять и устранять. В табл.12.1 приводятся основные неполадки в гидросистемах машин, их причин и способы устранения.
№ п/п Неполадки Возможные причины Способ устранения
Насос не подает жидкость в систему Неправильное направление вращения вала насоса В баке мало рабочей жидкости Засорился всасывающий трубопровод Подсос воздуха во всасывающей трубе Поломка насоса Велика вязкость жидкости Засорился демпфер переливного клапана Изменить вращение вала Долить жидкость до отметки маслоуказателя Прочистить трубопровод Подтянуть соединение Устранить повреждения или заменить насос Заменить жидкость Промыть клапан и прочистить демпферное отверстие
Насос не создает давления в системе Насос не подает жидкость в систему Большой износ насоса (внутренние утечки велики) Большие внешние утечки по валу через корпус насоса Большие внутренние утечки в гидросистеме "Завис" золотник предохранительного клапана или не "сел" на седло переливной клапан Уменьшение вязкости масла вследствие его нагрева (обычно выше 50 С) См. пункт 1 Проверить производи-тельность насоса на холостом ходу и под нагрузкой. При объемном КПД ниже паспортного заменить насос. Заменить уплотнения. Проверить, нет ли раковин, трещин и т.д. При их обнаружении заменить насос Заменить уплотнения. Проверить узлы гидросистемы на герметичность и отремонтировать Разобрать и промыть клапан, проверить состояние демпфера, пружины, шарика и его седла Улучшить условия охлаждения масла
Шум и вибрация в системе Большое сопротивление во всасывающем трубопроводе Мала пропускная способность фильтра или он засорился Подсос воздуха во всасывающей трубе Засорился сапун в баке Вибрация клапана Резкое изменение проходного сечения трубопроводов Нежесткое крепление трубопроводов Увеличить проходное сечение труб Заменить фильтр или промыть его Подтянуть соединения Прочистить сапун Разобрать и проверить демпфирующие каналы Увеличить и выправить проходные сечения трубопроводов Закрепить трубопроводы
Неравномерное движение рабочих органов Наличие воздуха в гидросистеме Давление настройки предохранительного клапана близко к давлению, необходимому для движения рабочих органов Малó противодавление на сливе из цилиндра Механическое заедание подвижных частей гидроцилиндра Неравномерная подача масла насосом. Шум и стук в насосе вслед-ствие поломки одной из лопаток или плунжера Выпустить воздух из системы Настроить предохранительный клапан на давление на 0,5…1,0 МПа больше, чем давление, необходимое для движения рабочих органов Повыcить сопротивление на сливе (регулировкой дросселя или подпор-ного клапана) Отремонтировать гидроцилиндр Заменить насос
Резкое уменьшение скорости движения при росте нагрузки Большие внутренние или внешние утечки в элементах гидросистемы Регу





©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.