Здавалка
Главная | Обратная связь

Основные теоретические сведения



В зависимости от способности проводить электрический ток все твердые тела делятся на проводники, полупроводники и диэлектрики (изоляторы).

Полупроводниками являются вещества, занимающие промежуточное положение между проводниками и диэлектриками по своей способности проводить электрический ток.

Граница между полупроводниками и диэлектриками условна, так как диэлектрики при соответствующем значительном повышении температуры становятся подобными полупроводникам, а чистые полупроводники при весьма низкой температуре ведут себя как диэлектрики.

Характерной особенностью полупроводников является необычайно- высокая чувствительность к примесям. Чем лучше очистка полупроводника, тем выше его удельное сопротивление. При 300 К (27°С) удельное сопротивление германия 47 Ом∙м. Но достаточно добавить к 108 атомам германия один атом примеси, и его удельное сопротивление снижается до 4 Ом∙м.

В чистых полупроводниках (без примесей), находящихся при низких температурах, свободные электроны (электроны проводимости) отсутствуют, так как все они участвуют в образовании связей между атомами кристаллической решетки. Для того чтобы валентный электрон стал электроном проводимости и мог принимать участие в переносе заряда, необходимо сообщить атому дополнительную энергию. Это можно осуществить путем повышения температуры полупроводника или воздействуя на него излучением.

Процесс отрыва электрона от нейтрального атома сопровождается образованием на его месте вакансии, которую называют дыркой (рис. 1).

В чистом полупроводнике число электронов проводимости равно числу вакансий. В результате теплового возбуждения электроны соседних нейтральных атомов могут переходить на вакантное место. Такое коллективное поочередное движение электронов, находящихся в основном в положении равновесия около атомов, можно представить в виде встречного потока положительно заряженных частиц, называемых дырками. Перемещение, как свободных электронов, так и дырок в отсутствие электрического поля носит хаотический характер.

Если к полупроводнику приложить определенную разность потенциалов, то возникает упорядочивающее электрическое поле и движение дырок и электронов примет направленный характер. Электроны будут перемещаться в сторону большего потенциала (против направления линий напряженности внешнего электрического поля), а дырки - в сторону меньшего потенциала (вдоль направления линий напряженности поля). Таким образом, в чистом полупроводнике имеется два вида проводимости - электронная и дырочная. Электронная проводимость (n - типа) обусловлена движением свободных электронов, а дырочная (p - типа) - коллективным движением связанных с атомами валентных электронов.

Собственной проводимостьюназывается электропроводность веществ, обусловленная свободными электронами и дырками, образовавшимися в равных количествах при тепловых движениях атомов.

В практических целях чаще используются полупроводники с добавками других элементов - примесей, наличие которых приводит к преобладанию одного из типов проводимости.

Так, если к четырехвалентному германию добавить незначительное количество пятивалентного мышьяка или сурьмы, то в нем образуется избыток слабосвязанных с ядром электронов (рис. 2). Обусловлено это тем, что четыре валентных электрона примеси участвуют в создании химической связи с атомом германия, а пятый валентный электрон оказывается слабо связанным с атомом примеси, поэтому он легко становится «свободным». Эти электроны уже при комнатной температуре могут принимать участие в создании тока проводимости.

Примеси, добавление которых к собственному полупроводнику приводит к увеличению концентрации свободных электронов, называются донорными, а проводимость в этом случае будет электронной (n-типа).

Добавление к германию примеси с валентностью, равной трем, например, бора или индия, приводит к повышению концентрации дырок (рис. 3). Объясняется это нехваткой у атома индия одного электрона для установления прочной связи с атомом германия, при этом между этими двумя атомами получается незаполненная валентная связь, или «дырка». Число дырок в кристалле равно числу атомов примеси.

Примеси, при добавлении которых к чистому полупроводнику возрастает концентрация дырок, называются акцепторными, а проводимость будет дырочной (p-типа).

Примеснойназывается проводимость, обусловленная присутствием в полупроводнике примесей какого-либо типа.

Большая часть полупроводниковых приборов работает на основе электронно-дырочного перехода, который представляет собой границу между двумя областями полупроводника, одна из которых p – типа, а другая n – типа. Создание такого перехода осуществляется, например, диффузионным способом или путем ионной имплантации (ионной бомбардировкой поверхности полупроводника с последующим высокотемпературным отжигом).

В p - области перехода основными носителями являются дырки, а неосновными - электроны. В n – области, наоборот, основными носителями являются электроны, а неосновными - дырки. Следовательно, в каждой области концентрация основных носителей много больше концентрации неосновных носителей заряда и в области контакта полупроводников с различным типом проводимости существует градиент концентрации электронов и дырок, вызывающий их диффузию через пограничный слой во встречных направлениях.

В результате ухода электронов и дырок из атомов в приконтактных областях возникает область положительно и отрицательно заряженных ионов (доноров и акцепторов) – двойной запирающий слой. Этот слой обладает большим сопротивлением, так как в нем отсутствуют свободные носители заряда. Сами электроны и дырки, перейдя в соседние области p-n перехода, рекомбинируют (нейтрализуются) там с основными носителями. Таким образом, на границе двух полупроводников появляется контактное поле напряженностью Ek (рис. 4).

Направление контактного поля таково, что оно препятствует дальнейшему переходу через двойной слой основных носителей с той и другой стороны p-n перехода и, наоборот, способствует переносу неосновных носителей.

Если на p - полупроводник подать положительный потенциал, а на n - полупроводник - отрицательный, то двойной слой обогатится основными носителями заряда и его сопротивление снизится (прямое смещение p-n перехода). Если на p - область подать отрицательный потенциал, а на n - область - положительный, то основные носители заряда будут оттягиваться от области двойного электрического слоя, ширина его увеличится и сопротивление возрастет (обратное смещение перехода). Ток через p-n переход будет мал и обусловлен движением неосновных носителей заряда, концентрация которых незначительна. Такой ток называют обратным или тепловым. Таким образом, сопротивление p-n перехода при одном направлении тока больше, чем при другом, следовательно, p-n переход хорошо пропускает ток только в одном направлении (обладает выпрямляющими свойствами). Эти свойства легли в основу работы полупроводникового диода - полупроводникового прибора с одним p-n переходом и двумя выводами. Электронно-дырочный переход нельзя получить, наложив одну на другую пластины, изготовленные из полупроводников с различной примесной проводимостью, так как между пластинами неизбежно наличие поверхностных пленок или очень тонкого слоя воздуха. Такой переход создается лишь посредством образования областей с различными электропроводностями в одной пластине полупроводника методом вплавления.

Важнейшее значение в теории полупроводниковых приборов представляет аналитическая зависимость между напряжением, приложенным к p-n переходу и возникающим при этом током. Такая зависимость называется вольт-амперной характеристикой p-n перехода (диода) и описывается уравнением:

(1)

где - тепловой ток p-n перехода,

- приложенное к переходу напряжение (учитывает знак)

- температурный потенциал, определяемый по формуле:

(2)

где - постоянная Больцмана,

- абсолютная температура среды

е - заряд электрона.

Анализ выражения (1) для комнатных температур ( 300 К, В) показывает следующее. При прямых напряжениях, превышающих 0,1 В, можно пренебречь единицей по сравнению с экспоненциальной составляющей, а при отрицательных напряжениях В, наоборот, значение экспоненциальной составляющей становится пренебрежимо малым по сравнению с единицей. Следовательно, график роста прямого тока через полупроводниковый диод с увеличением прямого напряжения представляет собой экспоненциальную кривую. При обратном включении ток через диод становится очень малым, определяется только тепловым током и не зависит от напряжения. Таким образом, величина и направление тока, протекающего через p-n переход (диод), зависят от величины и знака приложенного к переходу напряжения.

На рис. 5 приведена вольт-амперная характеристика идеального полупроводникового диода. Для реальных диодов вольт-амперная характеристика может иметь несколько иной, но похожий вид.

При прямом токе характеристика имеет вид круто восходящей ветви. На участке 1 и прямой ток мал. На участке 2 запирающий слой отсутствует, ток определяется только сопротивлением полупроводника. В обратном направлении ток быстро достигает насыщения и не изменяется до некоторого предельного обратного напряжения Uпр, после чего резко возрастает. На участке 3 запирающий слой препятствует движению основных носителей, а небольшой ток определяется движением неосновных носителей заряда. При напряжении, большем предельного (Uпр), наступает пробой p-n перехода и обратный ток Iобр быстро растет (участок 4). Напряжение Uпр еще называют напряжением пробоя или пробойным напряжением диода. Напряжение пробоя диода – это одна из характеристик, определяющих его режим работы. При использовании диодов в выпрямительных устройствах работа при обратных напряжениях, близких к Uпр, не допускается, так как может привести к выводу диода из строя. В этом случае p-n переход «выгорает» и диод становится проводником, одинаково хорошо пропускающим ток в обоих направлениях.

Обоснование метода

На рисунке 6 представлены электрические схемы для снятия вольт-амперной характеристики диода (a – в прямом включении, b -в обратном включении). Схема, представленная на рис.6 - а используется, когда сопротивление диода мало по сравнению с сопротивлением вольтметра RV.

Схема, представленная на рис.6 - b используется, когда сопротивление диода, включенного в цепь велико по сравнению с сопротивлением амперметра RA.

При измерении по схеме рис. 6 - а амперметр измеряет не только подлежащий определению ток через диод, но и ток через вольтметр, который будет мал по сравнению с током через диод и им можно пренебречь.

При измерении по схеме рис. 6 - b вольтметр измеряет не только напряжение на диоде, но и напряжение на амперметре, которое будет мало и им можно пренебречь.

 

Описание установки

Данные схемы реализованы на лабораторном стенде (рис. 7), где 1 – диод, 2 – мультиметр, выполняющий функции вольтметра, 3 – тумблер,

позволяющий изменять места подключения данного мультиметра при прямом и обратном включении диода,4-переключатель направления тока, 5 – мультиметр, играющий роль милли- или микроамперметра, 6 – ручка потенциометра, 7 – тумблер включения питания установки.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.