Здавалка
Главная | Обратная связь

Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике



Из предыдущего раздела следует, что напряженность поля Е при переходе из вакуума в диэлектрик изменяется скачкообразно. Такой же эффект будет наблю­дать­ся при переходе из одного диэлектрика в другой. Скачкообразное изменение вектора , обусловленное его зависимостью от e, затрудняет расчет полей при реше­нии ряда задач. Поэтому для характеристики электрического поля целесообразно внести век­торную величину , которая не зависела бы от e. Этот вектор , он называется вектором электрического смещения или электрической индук­ции. Подставим в последнее соотношение e = 1+æ и получим

.

Обратимся вновь к рисунку 1.19. Внешнее поле создается свободными заря­дами заряженных поверхностей. Внутри диэлектрика действует также поле связанных за­рядов, т.е. зарядов, входящих в состав атомов и молекул диэлектрика. Заряды, не связанные с перечисленными выше частицами диэлектрика, называют сво­бодными. Это: а) заряды частиц, способных перемещаться под действием элек­триче­ского поля на макроскопические расстояния (электронов проводимости в ме­таллах, электронов в вакууме, ионов в электролитах и т.п.); б) положительные заря­ды атом­ных остатков в металлах; в) избыточные заряды, сообщенные телу и нару­шающие его электрическую нейтральность (например, заряды, нанесенные извне на поверхность диэлектрика).

Электрическое поле в диэлектрической среде создается как свободными, так и связанными зарядами. Первичным источником поля являются свободные заряды, а поле связанных зарядов возникает в результате поляризации диэлектрика при поме­щении его в поле свободных зарядов. Причем, поле связанных зарядов может выз­вать перераспределение свободных зарядов и изменить поле этих зарядов.

Поэтому вектор характеризует электростатическое поле, создаваемое сво­бодными зарядами в вакууме (e=1), но при таком их распределении в пространстве, какое будет при наличии диэлектрика. Линии вектора начинаются и заканчиваются на любых зарядах - свободных и связанных, а линии вектора - только на свободных зарядах и они проходят диэ­лектрик не прерываясь. Смысл введения вектора электрического смещения состоит в том, что поток вектора через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами, находящимися внутри объема, ограни­чивающего данную поверхность S (как это было с потоком ). Это позволя­ет не рассматривать связанные (поляризованные) заряды и упрощает решение мно­гих за­дач.

Поток вектора через произвольную замкнутую поверхность S равен , где Dn - проекция вектора на нормаль к площадке dS. Теорема Гаусса для электростатического поля в диэлектрике выводится аналогично выводу теоремы для вакуума, в результате получаем , где в правой части сумма свободных зарядов.

Сегнетоэлектрики

В 1930-1934 г. И.В.Курчатов и П.П.Кобеко обнаружили и изучили группу диэ­лектриков, обладающих необычными диэлектрическими свойствами. Первона­чально эти свойства были обнаружены в кристаллах сегнетовой соли и, поэтому, подобные по свойствам диэлектрики получили название сегнетоэлектриков (или ферроэлектриков).

Первая особенность сегнетоэлектриков заключается в том, что в некотором температурном интервале их диэлектрическая проницаемость достигает огромных значений (около 10000). Вторым важным свойством является нелинейная зависимость электрического смещения и вектора поляриза­ции от напряженности поля. Это объясняется зависи­мостью æ и e от , которая для раз­ных сегнето­электриков имеет разный харак­тер. Третья особенность сегне­тоэлектриков - это явление диэ­лектрического гистерезиса («hysteresis» по-гре­чески означает запаздывание). На рис.1.20 представлена зависи­мость численного значения век­тора поляризации от напря­женности внешнего поля . С увеличением Е значе­ние Ре растет и достигает насыщения (в точке а). Если затем по­степенно уменьшать Е до нуля, то Ре, уменьшаясь, достигнет значения Рео (остаточная поляризация). Чтобы ее снять, потребуется поле обратного направле­ния (к). Величина Ек назы­вается коэрцитивной силой. При дальнейшем цикличе­ском изменении напряжен­ности электрического поля зависимость Ре от Е описывает­ся петлеобразной кривой - петлей гистерезиса (рис.1.20). Свойства сегнетоэлектриков сильно зависят от температуры. При температу­рах, превышающих определенное значение Тк, сегнетоэлектрик превращается в обычный диэлектрик, то есть он утрачивает все характерные для него свойства. Эта температу­ра называется точкой Кюри. В некоторых случаях, как, например, для сегнетовой соли, существуют две температуры Кюри (+24°С и -18°С) и сегнетоэлек­трические свойства наблюдаются лишь в этом интервале. Наличие одной или нес­кольких точек Кюри является четвертым характерным свойством всех сегнетоэлек­триков. Превра­щение сегнетоэлектрика в обычный диэлектрик при Т=Тк сопровож­дается фазовым переходом II рода. Вблизи точки Кюри наблюдается резкое возрас­тание теплоемкос­ти вещества.

Причиной описанных сегнетоэлектрических свойств является самопроизволь­ное возникновение макроскопических областей, в которых дипольные моменты от­де­льных молекул ориентированы одинаково при отсутствии внешнего электричес­кого поля. Области самопроизвольной поляризации называются доменами (рис.1.21).

Рис.1.21. Области самопро­извольной поляризации (домены) в сегнетоэлек­трике.

В ка­ждой соседней области (домене) ориентация диполей различна и кристалл в це­лом дипольным моментом не обладает. При внесении сегнетоэлектрика во внешнее элек­трическое поле начинают ориентироваться по полю сразу целые поляризован­ные области. Поэтому даже в слабых электрических полях сегнетоэлектрик обладает высокой диэлектриче­ской проницаемостью e. Эффект «запаздывания» Ре от Е (рис.1.20) и наличие остаточной поляризации при сня­тии внешнего поля обусловлены трудностями переори­ентации, т.е. превращения полнос­тью поляризованного вещества в исходное состояние, имеющее доменное строение.

Сегнетоэлектрики имеют большое практическое значение в современной электро- и радиотехнике. На­пример, титанат бария, обладающий высокой химической устойчивостью, механи­че­ской прочностью и способностью сохранения сегнетоэлектрических свойств в широ­ком температурном интервале, широко применяется в качестве генератора и прием­ника ультразвуковых волн. Огромные значения e у сегнетоэлектриков дали возмож­ность применять последние при изготовлении конденсаторов. Резкое изменение проводимости вблизи фазового перехода в некоторых сег­не­тоэлектриках используется для контроля и измерения температуры.

Все сегнетоэлектрики являются хорошими пьезоэлектриками (см. раздел 1.15.6), что позволяет их использовать в детекторах электромагнитных волн.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.