Здавалка
Главная | Обратная связь

Елементи комбінаторики



Розміщення. Кінцеві впорядковані підмножини, що містять m елементів, узятих з n елементів основної множини, називаються розміщеннями з n елементів по m елементів. Число всіх можливих розміщень з n елементів по m позначають .

(1.2)

Приклад. Нехай є три елементи А, В, С. Складемовсі комбінації з трьох елементів по два, отримаємо: АВ, AC, ВА, ВС, СА, СВ. Вони відрізняються або елементами, або їх порядком. За формулою (1.2) маємо .

Перестановки. Різні кінцеві впорядковані множини, що складаються зі всіх елементів деякої заданої множини називаються перестановками. Якщо основна множина містить n елементів, то число перестановок позначається . Перестановки – не що інше, як спосіб впорядкування якої-небудь кінцевої множини.

(1.3)

Приклад. Розглянемо три елементи: А, В, С. Складемовсі можливі комбінації з цих елементів: АВС; АСВ; ВСА; ВАС; CAB; CBA (всього 6 комбінацій). Видно, що вони відрізняються один від одного тільки порядком розташування. За формулою (1.3) маємо .

Сполучення. Кінцеві невпорядковані підмножини, які містять m різних елементів з n елементів заданої множини називаються сполученнями з n елементів по m.

Число сполучень з n елементів по m позначають . Воно дорівнює кількості способів, скількома можна витягувати m предметів з n можливих, якщо порядок ролі не грає, і обчислюється за формулою (0 £ m £ n):

(1.4)

Приклад. Розглянемо три елементи: А, В, С. Складемовсі можливі сполучення з трьох елементів по два: АВ, AC, ВС За формулою (1.4)

Розміщення із повторенням. Беремо з множини навмання m елементів з поверненням. Тоді у фіксованій підмножині кожний елемент може повторитися m разів. Елементарною подією у випробуванні буде розміщення з n елементів по m із повторенням, а кількість таких розміщень

(1.5)

Приклад. Розглянемо три елементи А, В, С. Складемовсі комбінації з трьох елементів по два з повтореннями, отримаємо: АВ, AC, ВА, ВС, СА, СВ, АА, ВВ, СС. Вони відрізняються або елементами, або їх порядком. За формулою (1.5) , що співпадає з результатом приведеного прикладу.

Перестановки із повторенням. Маємо елементів, серед яких один елемент повторюється раз, інший елемент повторюється раз, і так далі, а останній елемент повторюється раз, причому . Число перестановок з повтореннями позначається та обчислюється за формулою

(1.6)

Приклад. Розглянемо елементи А, A, A, В, B. Складемовсі перестановки із повторенням, отримаємо: АAABB, AABBA, ABBAA, BBAАА, BAAAB, ABAAB, AABAB, BABAA, BAABA, ABABA. За формулою (1.6) , що співпадає з результатом приведеного прикладу.

Сполучення з повтореннями. Якщо в сполученнях з n елементів по m деякі з елементів (і навіть всі) можуть виявитися однаковими, то такі поєднання називаються сполученнями з повтореннями із n елементів по m.

Число сполучень з повтореннями із n елементів по m позначається символом і обчислюється за формулою

. (1.7)

Приклад. Розглянемо три елементи А, В, С. Складемовсі сполучення з трьох елементів по два з повтореннями, отримаємо: АВ, AC, ВС, АА, ВВ, СС. За формулою (1.7) , що співпадає з результатом приведеного прикладу.
Приклад. У компанії 10 акціонерів, з них троє мають привілейовані акції. На збори акціонерів з'явилося 6 чоловік. Знайти ймовірність того, що з'явилися акціонери, які не мають привілейованих акцій.

Розв’язання.

Позначимо = {серед шести чоловік немає жодного з привілейованими акціями}.

Випробуванням є відбір 6 чоловік з 10 акціонерів. Число всіх результатів випробування дорівнює числу сполучень з 10 по 6, тобто

Результатом, що сприяє події А, є відбір шести чоловік серед семи акціонерів, які не мають привілейованих акцій. Число всіх результатів, що сприяють події А, буде

Шукана ймовірність

.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.