Здавалка
Главная | Обратная связь

Химический состав сухого атмосферного воздуха у земной поверхности



Газ Объемная концентрация, % Молекулярная масса
Азот 78,08 28,01
Кислород 20,94 31,99
Аргон 0,93 39,94
Углекислый газ 0,03 44,00
Неон 1,8·10-3 20,17
Гелий 5,2·10-4 4,00
Метан 2·10-4 16,04
Криптон 1,1·10-4 83,80
Водород 5·10-5 2,01
Закись азота 5·10-5 44,01
Ксенон 8,7·10-6 131,30
Двуокись серы до 1·10-4 64,06
Озон до 7·10-6 летом 47,99
до 2·10-6 зимой
Двуокись азота до 2·10-6 46,00
Аммиак Следы 17,03
Окись углерода Следы 28,01
Йод Следы  
    Средняя молекулярная масса сухого воздуха равна 28,96

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега. Процессы фазовых переходов воды протекают преимущественно в тропосфере. Именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака обычно закрывают около 50% всей земной поверхности.

Большое влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает озон. Озон в основном сосредоточен в стратосфере, где вызывает поглощение ультрафиолетовой солнечной радиации, являющееся главным фактором нагревания воздуха в стратосфере. Средние месячные значения общего содержания озона изменяются в зависимости от широты и времени года в пределах 0,23-0,52 см(такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсу и годовой ход с минимумом осенью и максимумом весной.

Существенная переменная компонента атмосферы – углекислый газ, изменчивость содержания которого связана с жизнедеятельностью растений (процессами фотосинтеза), индустриальными загрязнениями и растворимостью в морской воде (газообменом между океаном и атмосферой). Обычно изменения содержания углекислого газа невелики, но иногда могут достигать заметных значений. Последние десятилетия наблюдается рост содержания углекислого газа, обусловленный индустриальным загрязнением, что может иметь влияние на климат вследствие создаваемого углекислым газом парникового эффекта. Предполагается, что в среднем концентрация углекислого газа остаётся неизменной во всей толще гомосферы. Выше 100 км начинается его диссоциация под влиянием ультрафиолетовой солнечной радиации с длинами волн короче 1690 Å.

Одна из наиболее оптически активных компонент – атмосферные аэрозоли – взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в атмосферу с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса. Аэрозоль наблюдается как в тропосфере, так и в верхних слоях атмосферы. Концентрация аэрозоля быстро убывает с высотой.

4.4. Радиационный, тепловой и водный балансы атмосферы.Практически единственным источником энергии для всех физических процессов, развивающихся в атмосфере, является солнечная радиация. Главная особенность радиационного режима атмосферы – так называемый парниковый эффект: атмосфера слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в атмосферу солнечная радиация частично поглощается в атмосфере главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности атмосферы. Вследствие рассеяния лучистой энергии Солнца в атмосфере наблюдается не только прямпрямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности – альбедо.За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к атмосфере. В свою очередь, атмосфера также излучает длинноволновую радиацию, направленную к земной поверхности (противоизлучение атмосферы) и в мировое пространство (уходящее излучение). Рациональный теплообмен между земной поверхностью и атмосферой определяется эффективным излучением – разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом.

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в атмосфере составляют тепловой баланс Земли. Главный источник тепла для атмосферы – земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в атмосфере меньше потери тепла из атмосферы в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к атмосфере от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в атмосфере. Так как итоговая величина конденсации во всей атмосфере равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в атмосферу численно равен затрате тепла на испарение на поверхности Земли.

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции атмосферы и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Солнечная радиация – основной источник тепла и света. Интенсивность радиации зависит от широты местности, характера подстилающей поверхности, облачности, времени суток, времени года. Наибольшие различия наблюдаются в приходе прямой солнечной радиации на северные и южные склоны. Южные – получают больше солнечной радиации по сравнению с прямой поверхностью, а северные – меньше.

Растения в процессе фотосинтеза усваивают только часть приходящей энергии солнца, которая называется фотосинтетической активной радиацией (ФАР). ФАР – световые лучи с длиной волны от 0,38 до 0,71 мкм. Часть ФАР, используемую растениями для фотосинтеза и выраженную в процентах, называют коэффициентом использования ФАР. По А.А.Ничипоровичу, посевы сельскохозяйственных культур по использованию ФАР можно разделить на следующие группы: обычные 0,5-1,5%; хорошие – 1,5-3,0; рекордные 3,5-5,0 и теоретически возможные – 6-8%. Величина ФАР зависит от широты местности и на территории России изменяется от 0,4-0,6 млн. МДж/га в тундре до 2,5-2,9 млн. МДж/га на Северном Кавказе.

Движение воздуха. Вследствие большой подвижности атмосферного воздуха на всех высотах атмосферы наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный – неравномерность нагрева атмосферы в разных районах Земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года. В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.

Неравномерность нагревания атмосферы способствует развитию системы крупных в масштабе планеты воздушных течений – получивших название - общей циркуляции атмосферы, которая осуществляет перенос тепла в атмосфере, в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в атмосфере, в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли. На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны – воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направлений (с запада на восток). Эти течения включают крупные вихри – зоны пониженного давления – циклоны и повышенного – антициклоны, которые обычно простираются на сотни и тысячи километров. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения,имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей – до 100-150 м/сек. Наблюдения показывают, что особенности атмосферной циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой – западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений – около 80 м/сек, а летнего восточного переноса – до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область атмосферы подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 кмможет достигать 100-120 м/сек. Характерная черта атмосферных приливов – их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз, бора, горно-долинные ветры и др.). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Воздействие сильных ветров на почвы является одним из главных факторов ветровой эрозии (дефляции) почв. Особенности развития и проявления современных эрозионных процессов дают возможность выделить нормальную и ускоренную эрозию почвы. Нормальная эрозия протекает очень медленно, а поэтому незначительные потери верхних слоев почвы от выдувания и смыва восстанавливаются в ходе почвообразовательного процесса. Такая эрозия имеет место на почвах, поверхность которых не затронута хозяйственной деятельностью. Нормальную эрозию называют геологической.

Ускоренная эрозия почвы имеет место в районах, где нерациональная хозяйственная деятельность человека активизирует естественные эрозионные процессы, доводя их до разрушительной стадии. Ускоренная эрозия является следствием интенсивного использования земли без соблюдения противоэрозионных мероприятий (распашка склонов, сплошная вырубка лесов, нерациональное освоение девственных степей, неурегулированный выпас скота, приводящий к уничтожению естественной травянистой растительности).

В ветровой эрозии (дефляции) различают пыльные бури (черные бури) и повседневную (местную) ветровую эрозию. Во время пыльных бурь ветры достигают больших скоростей и охватывают огромные территории. На отдельных участках за один два дня сносится верхний горизонт почвы мощностью до 25 см, уничтожаются посевы на огромных площадях.

Повседневная, или местная, ветровая эрозия почв носит локальный характер и охватывает небольшие площади. Наиболее часто она проявляется на песках и площадях с легкими почвами, а также на карбонатных суглинистых почвах. Местная ветровая эрозия проявляется и зимой, когда сильные ветры сдувают снег. В этом случае почва на оголенных участках, прежде всего на выпуклых склонах, быстро теряет влагу и разрушается воздушными потоками.

Пыльная буря, сильный ветер, способный переносить миллионы т пыли на расстояние до нескольких тыс. км. Пыльные бури возникают обычно в тёплое время года в пустынях, полупустынях и распаханных степях при пересыхании почвы, в условиях слабого развития растительности или отсутствия её. Пыльные бури известны в США, Китае, Египте, России, на юге Украины, Северном Кавказе, в равнинных районах Казахстана и Средней Азии и некоторых других странах. Особенно сильные пыльные бури возникают при нерациональной распашке земель. Пыльные бури приносят огромные убытки сельскому хозяйству, засыпая посевы и уничтожая на значительных пространствах поверхностный слой почвы, вызывают заносы на железных дорогах и т.д. Борьба с пыльными бурями проводится с помощью полезащитных лесных полос, снего- и водозадержания и др. агротехнических мероприятий.

4.5. Климат и погода.Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли.

Климатом называют статистический режим условий погоды, характерный для каждого данного места Земли в силу его географического положения. Этот режим несколько меняется от одного многолетнего промежутка времени к другому, причем такие изменения в историческое время имеют характер колебаний. Кроме общего понятия климат, различают:

- макроклимат– климат крупномасштабного географического района, зоны или области, характеризующийся данными метеорологических станций в типичных для этого района ландшафтах;

- мезоклимат – климатические условия, промежуточные между климатом в тесном смысле слова и микроклиматом. Совпадает с понятием местного климата;

- микроклимат – климат небольшой территории внутри географического ландшафта, например, поля, склона, холма, опушки леса, лесных полос, берега озера, площади города и преобладающая. Микроклимат отражает те особенности климата данного места, которые отличаются от климата смежных территорий или от общих климатических характеристик данной области.

Погода– это непрерывно меняющееся состояние атмосферы. Погода в данном месте в данный момент характеризуется совокупностью значений метеорологических элементов, за некоторый промежуток времени погода характеризуется последовательным изменением этих элементов или их средними значениями за взятый промежуток. Чаще всего подразумевают погоду у поверхности земли, однако в связи с развитием авиации теперь изучается и погода в свободной атмосфере. В число метеорологических элементов, характеризующих погоду, включаются обычно лишь те характеристики состояния атмосферы или атмосферных процессов, которые оказывают существенное влияние на природу и на жизнь и деятельность людей.

Климат тропических широт характеризуется высокими температурами воздуха у земной поверхности (в среднем 25-30°C), которые мало меняются в течение года. В экваториальном поясе обычно выпадает большое количество осадков, что создаёт там условия избыточного увлажнения. В тропиках, за пределами экваториального пояса, количество осадков уменьшается и в ряде областей субтропического пояса высокого давления становится очень малым. Здесь расположены обширные пустыни Земли.

В субтропиках и умеренных широтах температура воздуха значительно меняется в годовом ходе, причём разница между температурой зимы и лета особенно велика в удалённых от океанов районах континентов. Так, например, в некоторых областях Восточной Сибири температура наиболее холодного месяца на 65°С ниже температуры наиболее тёплого. Условия увлажнения в указанных широтах очень разнообразны и в основном зависят от режима общей циркуляции атмосферы.

В полярных широтах, при наличии заметных сезонных изменений температуры, она остаётся низкой в течение всего года, что способствует широкому распространению ледяного покрова на суше и океанах.

На фоне сравнительно устойчивого климата происходит постоянное изменение погоды, определяемой в основном общей циркуляцией атмосферы. Погода наиболее устойчива в тропических странах и наиболее изменчива в околополярных областях, в частности на севере Атлантического и Тихого океанов, где проходят пути многих циклонов. Анализ причин изменения погоды лежит в основе методов прогноза погода, опирающихся на построение ежедневных синоптических карт. Всё более широкое распространение приобретают численные методы прогноза, основанные на решении гидродинамических и термодинамических уравнений, описывающих движение атмосферы.

Активные воздействия на атмосферные процессы.Большое научное и практическое значение имеет проблема активных воздействий на атмосферные процессы с целью изменения погоды и климата. Работы в этом направлении, впервые (в 50-х гг.) начатые в Советском Союзе, уже привели к созданию методов воздействия на некоторые атмосферные процессы. Так, в частности, рассеяние в облаках некоторых реагентов изменяет развитие грозовых облаков и предотвращает выпадение града, который приносит большие убытки сельскому хозяйству. Разработаны методы рассеяния туманов, защиты растений от заморозков, ведутся экспериментальные работы по воздействию на облака для увеличения количества осадков. Большинство применяемых сейчас методов воздействия на атмосферные процессы основано на возможностях управления неустойчивыми процессами, динамика которых может быть изменена при затратах сравнительно небольших количеств энергии и реагентов.

Наряду с активными воздействиями, заметные изменения в метеорологических условиях достигаются такими мелиоративными мероприятиями, как орошение, полезащитное лесоразведение, осушение заболоченных районов. Эти изменения, однако, в основном ограничиваются нижним (приземным) слоем воздуха.

Кроме направленных воздействий на погоду и климат, ряд аспектов деятельности человека оказывает определённое влияние на климатические условия. Так, в частности, в последние годы значительно усилилось загрязнение атмосферы пылью и различными газами, выбрасываемыми промышленными предприятиями. В связи с этим во многих странах проводят работы по контролю за загрязнением воздуха и по ограничению выбросов в атмосферу загрязняющих веществ. Быстрый рост энергетики приводит к дополнительному нагреванию атмосферы, которое в сравнительно близком будущем может привести к изменениям климата на больших территориях. Можно думать, что в ближайшее время значительно усилится контроль человека над атмосферными процессами для изменения их в благоприятном направлении и предотвращения последствий, вредных для хозяйственной деятельности.

Изучение атмосферы.Хотя изучение атмосферы началось ещё в античное время, наука об атмосфере – метеорология – сложилась только в XIX в. В состав метеорологии входит ряд дисциплин, которые различаются по применяемым в них методам исследований и по изучаемым объектам. Сюда относятся: физика атмосферы, химия атмосферы, климатология, синоптическая метеорология, динамическая метеорология и др. Влияние атмосферных факторов на биологические процессы изучается биометеорологией, включающей сельскохозяйственную метеорологию и биометеорологию человека. Классификация этих дисциплин окончательно не установилась и находится в стадии развития.

Для наблюдения за атмосферой на земной поверхности создана обширная сеть метеорологических станций и постов, оборудованных стандартными метеорологическими приборами и аэрологическими приборами, в труднодоступных районах устанавливаются автоматические метеорологические станции. Большое значение в системе наземных метеорологических наблюдений приобрела радиолокация, позволяющая обнаруживать и исследовать облака и осадки, турбулентные и конвективные образования в атмосфере, измерять скорость и направление ветра на высотах. Важная роль в метеорологических наблюдениях принадлежит вертикальным зондированиям атмосферы при помощи радиозондов для измерений атмосферного давления, скорости и направления ветра, температуры, влажности воздуха в свободной атмосфере.

Для изучения различных характеристик атмосферы применяются самолёты и автоматические аэростаты, например при исследовании облаков и разработке методов активных воздействий на них, а также для измерений в области актинометрии, атмосферной оптики и атмосферного электричества. В период с 1957-58г.г. и в последующие годы началось использование метеорологических ракет для измерений температуры и атмосферных давления в верхней стратосфере и мезосфере. Важнейшим средством получения метеорологической информации, особенно существенным для акватории океанов и территорий труднодоступных районов, стали метеорологические спутники.

Вопросы для повторения.

1. Какое влияние оказывает атмосфера на другие компоненты ландшафта? 2. Какие слои выделяются в атмосфере? 3. Какова мощность (высота над уровнем Земли) тропосферы? 4. Какие особенности нижней части ( до высоты 30-50м) тропосферы? 5. Как влияет земная поверхность на нижние слои тропосферы? 5. Сколько содержится в атмосферном воздухе азота, кислорода и углекислого газа? 6. Какой градиент температуры с высотой? 7. Из каких статей складывается тепловой баланс атмосферы? 8. Из каких статей складывается водный баланс атмосферы? 9. Из каких статей складывается радиационный баланс атмосферы? 10. Дайте определение климата. 11. Дайте определение погоды. 12. Какая часть фотосинтетически активной радиации (ФАР) используется растениями? 13. Что такое циклон и антициклон? 14. Основной источник углекислого газа в атмосферном воздухе? 15.Основной источник кислорода в атмосферном воздухе? 16. Какими газами наиболее активно обмениваются почвенный и атмосферный воздух?

Тестовые задания.

1. Какой слой атмосферы является составной частью ландшафта?

1. Тропосфера. 2. Стратосфера. 3. Нижний слой тропосферы. 4.Нижний слой стратосферы.

2. Какова мощность (высота над уровнем Земли) тропосферы ? (км)

1. 47-57. 2. 8-47. 3. 8-17. 4.17-47.

3. Сколько азота содержится в атмосферном воздухе? (%)

1. 20,94. 2. 78,08. 3. 87,08. 4. 0,03.

4. Сколько кислорода содержится в атмосферном воздухе? (%)

1. 20,94. 2. 78,08. 3. 87,08. 4. 0,03

5. Сколько углекислого газа содержится в атмосферном воздухе? (%)

1. 20,94. 2. 78,08. 3. 87,08. 4. 0,03

6. Главный источник углекислого газа в атмосферном воздухе?

1. Почвенный воздух. 2.Океан. 3. Карбонаты. 4.Животный мир.

7. Какая часть фотосинтетически активной радиации (ФАР) используется растениями? (%)

1. 0,1 - 0,5. 2. 0,1 - 8,0. 3. 8,0-16,0. 4. 16,0 – 32,0.

8. Какой газ вызывает парниковый эффект в атмосфере?

1. Озон. 2. Кислород. 3. Углекислый газ. 4. Азот.

9. Какой газ активно поглощается почвенным воздухом из атмосферного?

1. Азот. 2. Кислород. 3. Углекислый газ. 4. Неон.

10. Какой газ поступает из почвенного воздуха в атмосферный?

1. Азот. 2. Кислород. 3. Углекислый газ. 4. Неон.

 

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.