Многозначные зависимости. Теорема Фейджина. Четвертая нормальная форма
Заметим, что последний вариант переменной отношения СЛУЖ_ПРО_ЗАДАН находится в BCNF, поскольку все атрибуты заголовка отношения входят в состав единственно возможного ключа. В этом отношении вообще отсутствуют нетривиальные FD. Поэтому ранее обсуждавшиеся принципы нормализации здесь неприменимы, но, тем не менее, мы получили полезную декомпозицию. Все дело в том, что в случае четвертого варианта отношения СЛУЖ_ПРО_ЗАДАН мы имеем дело с новым видом зависимости, впервые обнаруженным Роном Фейджином в 1971 г. Фейджин назвал зависимости этого вида многозначными (multi-valued dependency – MVD). Как мы увидим немного позже, MVD является обобщением понятия FD. В отношении СЛУЖ_ПРО_ЗАДАН выполняются две MVD: СЛУ_НОМ (СЛУЖ_ПРО_НОМ WHERE (СЛУ_НОМ = сн AND СЛУ_ЗАДАН = сз)) PROJECT {ПРО_НОМ} для фиксированного допустимого значения сн и любого допустимого значения сз мы всегда получим одно и то же множество значений атрибута ПРО_НОМ. Аналогично трактуется вторая MVD. В переменной отношения R с атрибутами A, B, C (в общем случае, составными) имеется многозначная зависимость B от A (A Многозначные зависимости обладают интересным свойством «двойственности», которое демонстрирует следующая лемма. Лемма Фейджина В отношении R {A, B, C} выполняется MVD A Доказательство достаточности условия леммы. Пусть выполняется MVD A Таким образом, MVD A FD является частным случаем MVD, когда множество значений зависимого атрибута обязательно состоит из одного элемента. Таким образом, если выполняется FD A Мы видим, что отношения СЛУЖ_ПРО_НОМ и СЛУЖ_ЗАДАНИЕ не содержат MVD, отличных от FD, и именно в этом выигрывает декомпозиция из рис. 9.2. Правомочность этой декомпозиции доказывается приведенной ниже теоремой Фейджина, которая является уточнением и обобщением теоремы Хита. Теорема Фейджина Пусть имеется переменная отношения R с атрибутами A, B, C (в общем случае, составными). Отношение R декомпозируется без потерь на проекции {A, B} и {A, C} тогда и только тогда, когда для него выполняется MVD A Докажем достаточность условия теоремы. Пусть r является некоторым допустимым значением переменной отношений R. Пусть a есть значение атрибута A в некотором кортеже тела Br, {b} – множество значений атрибута B, взятых из всех кортежей тела Br, в которых значением атрибута A является a, и {c} – множество значений атрибута C, взятых из всех кортежей тела Br, в которых значением атрибута A является a. Тогда очевидно, что в тело значения r PROJECT {A, B} будут входить все кортежи вида {a, bi}, где bi Для доказательства необходимости условия теоремы предположим, что декомпозиция переменной отношения R {A, B, C} на проекции R PROJECT {A, B} и R PROJECT {A, C} является декомпозицией без потерь для любого допустимого значения r переменной отношения R. Мы должны показать, что в теле Br значения-отношения r поддерживается ограничение IF ({a, b1, c1};![]() ![]() ![]() ![]() Действительно, пусть в Br входят кортежи {a, b1, c1} и {a, b2, c2}. Предположим, что {a, b1, c2} 39 Упражнение по ходу лекции. Пусть имеется отношение r с атрибутами A , B , C (в общем случае, составными), в котором существует FD A Теорема Фейджина обеспечивает основу для декомпозиции отношений, удаляющей «аномальные» многозначные зависимости, с приведением отношений в четвертую нормальную форму. Переменная отношения r находится в четвертой нормальной форме (4NF) в том и только в том случае, когда она находится в BCNF, и все MVD r являются FD с детерминантами – возможными ключами отношения r. В сущности, 4NF является BCNF, в которой многозначные зависимости вырождаются в функциональные (позволим себе на один момент отказаться от сокращений). Понятно, что отношение СЛУЖ_ПРО_ЗАДАН не находится в 4NF, поскольку детерминант MVD СЛУ_НОМ ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|