Здавалка
Главная | Обратная связь

Краткая история развития автоматики



 

Развитие мировой техники шло в трех направлениях:

1) Создание машин двигателей (водяные, ветряные, паровые, дизельные и электрические), которые освободили человека от тяжелого физического труда;

2) Создание машин-орудий, т.е. станков и технологического оборудования различного назначения.

3) Создание машин для контроля и управления производственными процессами. Развитие этого направления было вызвано необходимостью надежно, точно и быстро управлять машинами-двигателями, машинами-орудиями и сложными технологическими процессами.

Идея создания машин и механизмов, которые бы работали без участия человека, возникла в древности. Первые автоматические действующие устройства, созданные людьми, создавались и использовались в религиозных или развлекательных целях. Практического значения автоматы древности и средневековья, за редким исключением, не имели.

С необходимостью построения управляющих устройств первыми столкнулись создатели высокоточных механизмов, в первую очередь, часов. Даже очень небольшие, но действующие непрерывно, помехи, накапливаясь, приводили, в конечном итоге, к отклонениям от нормального хода, недопустимым по условиям точности. Противодействовать им чисто конструктивными методами, например, улучшая точность и чистоту обработки деталей, повышая их массу или увеличивая полезные усилия, не всегда удавалось. И для повышения точности, в состав часов стали вводить регуляторы. На рубеже нашей эры арабы снабдили поплавковым регулятором уровня водяные часы.

Первое автоматическое устройство практического назначения было изобретено Гюйгенсом в 1657г – автоматический регулятор маятникового типа для стабилизации скорости хода часового механизма.

Другой причиной, побудившей строить регуляторы, была необходимость управлять процессами, подверженными столь сильным помехам, что при этом утрачивалась не только точность, но зачастую и работоспособность системы вообще. Предшественниками регуляторов для таких условий можно считать применявшиеся еще в средних веках центробежные маятниковые уравнители скорости хода водяных мукомольных мельниц.

Первые автоматические устройства промышленного назначения появились в связи с изобретением и развитием паровых машин и турбин в 18 и 19 веках в эпоху промышленного переворота в Европе.

Первым автоматическим регулятором такого типа является поплавковый регулятор питания парового котла, разработанный знаменитым русским механиком и изобретателем Н.И. Ползуновым в 1765 году. Он был применен на барнаульском механическом заводе для поддержания заданного уровня воды в паровом котле паровой поршневой машины.

В 1784 году английский механик Джеймс Уатт получил патент на центробежный регулятор скорости паровой машины, используемый для поддержания постоянства частоты вращения.

Принцип работы этих регуляторов оказался одним и тем же: они поддерживают заданное значение физического параметра не точно, а в некотором заданном диапазоне, поэтому такой принцип регулирования, широко применяемый в настоящее время, называется принципом “Ползунова-Уатта”.

К первым промышленным регуляторам относят также первое программное устройство управления ткацким станком от перфокарты, построенное в 1808 году Жаккаром. Оно применялось для воспроизведения узоров на коврах.

Эти регуляторы как бы открыли путь потоку изобретений принципов регулирования и регуляторов, продолжающемуся вплоть до середины 20-го века.

Паровая машина не случайно стала первым объектом для применения техники и теории управления, т.к. она не обладала способностью работать сама по себе, не имела “самовыравнивания”. Ее неблагоприятные динамические свойства часто приводили к тому, что подключенный к ней регулятор действовал не так, как ожидал конструктор, “раскачивал” машину или вообще оказывался неспособным управлять ею. Все это, естественно, побуждало к проведению теоретических исследований.

Три фундаментальные работы внесли коренное изменение в подходе к проблеме и в методологии исследований и содержали, по существу, изложение начал новой науки об управлении.

Это работы Дж. Максвелла “О регуляторах” (1866 г.) и Вышнеградского

“Об общей теории регуляторов” (1876) и “О регуляторах прямого действия” (1877 г.).

Максвелл и Вышнеградский впервые рассмотрели паровую машину и регулятор как единую динамическую систему, что позволило разработать методику исследования самых разнообразных по принципам действия и конструкции систем, заложить основы теории устойчивости и установить ряд важных общих закономерностей регулирования (по принципу обратной связи).

Особо важную роль в то время сыграла работа профессора Петербургского технологического института Вышнеградского “О регуляторах прямого действия” (1877 г.). В этой работе был проведен детальный анализ характеристик паровой машины и регулятора Уатта, раскрыта динамика работы машины и доказано, что во время работы регулятор и машина образуют единую систему. Эта работа отличалась глубоким инженерным подходом, рассмотрением важных для техники тех лет объектов и содержала кроме ценных практических рекомендаций истоки ряда современных методов исследования качества регулирования (диаграммы устойчивости и распределения корней, выделение областей устойчивости и монотонности и так далее).

Поэтому современники считали Вышнеградского основоположником теории автоматического управления (регулирования).

Работа Максвелла осталась в то время практически незамеченной, поскольку рассматривала малоинтересный для широкого круга инженеров объект (механизм ведения телескопа), явно полезных практических выводов не делала и рекомендовала регуляторы (астатические), практически непригодные для промышленных машин того времени. Ее роль была оценена значительно позже, когда теория автоматического управления (ТАУ) сформировалась в самостоятельную дисциплину.

Одна из первых теоретических работ, посвященных созданию теоретических основ работы и расчёта автоматических регуляторов, выполнена русским математиком П.Л. Чебышевым и посвящена теории работы астатического регулятора.

Помимо этих ученых большой вклад в развитие ТАУ внесли работы словацкого инженера и ученого Стодолы, рассматривавшего вопросы устойчивости регулирования паровых и гидравлических турбин, в учете влияния на процесс регулирования длинного трубопровода;

- Гурвица, разработавшего детерминантный критерий устойчивости по просьбе Стодолы (детерминантный – от лат.: “определитель” - определяющий);

- Рауса, разработавшего алгоритм для оценки расположения корней характеристического уравнения и устойчивости (по рекомендации Максвелла).

В 1892 году А.М. Ляпунов опубликовал работу “Общая задача устойчивости движения”, в которой доказал возможность решения вопросов устойчивости регулирования. Большой вклад в развитие автоматики внесли работы русских ученых Циолковского и Жуковского. Н.И. Жуковский является автором труда “О прочности движения” и первого русского учебника “Теория регулирования хода машин” (1909 г.), в которых дал описание процессов в длинных трубопроводах, рассмотрел влияние сухого трения в регуляторах, исследовал некоторые процессы импульсного регулирования посредством уравнений в конечных разностях.

Значительное развитие получили работы по теоретическим и прикладным вопросам автоматики в нашей стране. Фундаментальные работы выполнены И.Н. Вознесенским, А.А. Андроновым, И.М. Крыловым, А.Н. Колмогоровым, А.В. Михайловым, В.Н. Петровым, Л.С. Понтрягиным, А.А. Фельдбаумом, В.В. Солодовниковым, А.Г. Бутковским и многими другими. Эти работы способствовали установлению приоритета нашей науки в ряде ведущих областей теории управления.

Развитие науки позволило осуществить широкое внедрение автоматического управления в технике и промышленности, в том числе в металлургии и химической промышленности.

Начало работ по автоматизации процессов черной металлургии СССР следует отнести к концу тридцатых годов двадцатого века, когда были разработаны и внедрены системы регулирования теплового режима мартеновских печей на Магнитогорском и Кузнецком металлургических комбинатах.

В довоенные и первые послевоенные годы основные усилия были направлены на создание систем автоматического регулирования отдельных параметров теплового и технологического режимов металлургических агрегатов, таких как температура, давление, расход, уровень, влажность и других.

Широко развернулись работы по автоматизации процессов черной металлургии в пятидесятые годы. Созданы системы регулирования доменных и мартеновских печей, нагревательных и термических печей, прокатных станов, различных энергетических установок. Существенные результаты были получены в области автоматизации процессов электроплавки – разработаны системы управления тепловым и электрическим режимами дуговых печей. В эти же годы В.А. Сорокиным была осуществлена первая попытка применения ЭВМ для расчёта и управления теплового состояния доменной печи.

Со второй половины шестидесятых годов в связи с развитием ЭВМ и появлением достаточно дешёвых, надёжных и быстродействующих ЭВМ в мире появились первые автоматизированные системы управления (АСУ).

Это особенно стало необходимым в связи с появлением и развитием высокопроизводительных агрегатов большой единичной мощности и быстродействующих технологических процессов. В металлургии были созданы 350-ти тонные кислородные конвертеры, прокатные станы производительностью более 5 млн. тонн проката в год и др., поэтому существенно возросли требования к качеству продукции и экономичности производства.

АСУ построены на базе управляющих вычислительных комплексов (УВК), представляющих собой специализированную промышленную ЭВМ, предназначенную для вычислений и реализации функций автоматизированных систем управления. Именно разнообразие этих функций позволило поднять автоматизацию на качественно новый уровень. Автоматизированные системы управления развиваются в двух основных направлениях: автоматизированные системы управления технологическими процессами (АСУТП) и автоматизированные системы управления производственными процессами (АСУП).

До АСУТП имели место так называемые “локальные” системы автоматического регулирования (САР), в которых за функционирование отдельно взятого контура регулирования определённого технологического параметра отвечал свой автоматический регулятор (лат.: “локальный”- местный, ограниченный по месту).

Согласованная работа контуров, число которых в технологическом процессе может быть большим, проводилась оперативным персоналом.

В АСУТП насчитываются десятки – тысячи отдельных локальных контуров регулирования, согласование которых также проводит оперативный персонал, но при использовании управляющего вычислительного комплекса. Таким образом, локальные САР входят в АСУТП, как составная часть.

Автоматизированные системы управления производственными процессами выполняет функции: маркетинга, календарного планирования, поставок сырья, сбыта готовой продукции, финансирования и т.д. Объектом управления для АСУП является трудовой процесс непосредственного производства товарной продукции и вся административно-хозяйственная деятельность предприятия, неизбежно сопровождающая основной процесс производства продукции

В настоящее время созданы принципиально новые системы управления – интеллектуальные АСУ, использующие принципы и методы искусственного интеллекта.

Развитие промышленного производства включает в себя три основные составляющие:

- наука;

- проектирование;

- производство (внедрение).

Автоматизация используется не только в промышленном производстве в виде АСУТП И АСУП. В науке создаются автоматизированные системы научных исследований (АСНИ), которые позволяют на порядок увеличить производительность труда ученых.

В промышленности созданы системы автоматизированного проектирования (САПР), которые позволяют увеличить скорость проектирования, значительно уменьшая число ошибок в проекте.

Технический прогресс, осуществляемый на основе автоматизации, включает в себя три основные составляющие: АСНИ – САПР - АСУТП, что позволяет значительно повысить эффективность, как научных разработок, так и конечных производственных результатов.

 

 

Основные понятия и задачи автоматизации

В современной технике используется огромное число автоматических устройств и систем, предназначенных, однако, для решения лишь нес­кольких основных задач автоматизации: сигнализации, контроля, блоки­ровки и защиты, пуска и останова, управления. В соответствии с этими задачами подразделяются и системы автоматики.

Системы автоматической сигнализации (САС) предназначены для изве­щения обслуживающего персонала о состоянии технологической установки или протекающего в ней технологического процесса.

Системы автоматического контроля (САК) осуществляют без участия человека контроль (т.е. измерение и сравнение с нормативными показателями) различных величин, характеризующих работу техноло­гического агрегата или протекающий в нем технологический процесс. В промышленном производстве часто используют системы централизованного контроля (СЦК), в которых вся технологическая информация собирается и обрабатывается на центральном пульте управления.

Системы автоматической блокировки и защиты служат для предотвра­щения возникновения аварийных ситуаций в агрегатах и устройствах.

Системы автоматического пуска и останова обеспечивают включение, переключение и отключение различных приводов и механизмов агрегата или технологической установки по заранее заданной программе.

Системы автоматического управления(САУ) предназначены для управ­ления работой тех или иных технических устройств и агрегатов или про­текающими в них технологическими процессами.

Важнейшими и наиболее сложными из перечисленных систем являются системы автоматического управления.

Управлением в широком смысле слова называется организа­ция какого-либо процесса, обеспечивающего достижение поставленной це­ли.

Основной задачей любого процесса управления является выработка и реализация таких решений, которые при данных условиях обеспечивают наиболее эффективное достижение цели управления.

Целями управления технологическими процессами и агрегатами могут быть:

· поддержание постоянного значения некоторой физической величины с заданной точностью;

· изменение величины по определенной, заранее за­данной программе;

· получение оптимального значения величины или неко­торого обобщающего комплекса величин (максимальная производительность агрегата, минимальная стоимость продукта, минимальное время перехода объекта из одного состояния в другое) и т.д.

Если управление осущест­вляется непосредственно человеком, то такое управление называют руч­ным. Если же управление осуществляется без непосредственного участия человека, то такое управление называют автоматическим. Автоматическое управление производится с помощью автоматически действующих управля­ющих устройств. Объект управления и управляющее устройство составляют систему автоматического управления (САУ).

При наиболее простых целях управления (поддержание постоянного значения величины, изменение величины по заданной программе и др.) процесс управления называют регулированием. Объекты управления - объектами регулирования (ОР), управляющие устройства - автоматическими регуляторам, а системы автоматического управления - системами авто­матического регулирования (САР).

Автоматическое регулирование – это одна из важнейших функций автоматического управления, без осуществления которой невозможна работа большинства систем управления. В сложных системах управления, особенно с использованием ЭВМ, управлением называют процесс выработки необходимого решения, а регулированием - его реализацию на объекте.

 

КЛАССИФИКАЦИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ БУХГАЛТЕРСКОГО УЧЕТА

 

Автоматизированная форма бухгалтерского учета (АФБУ), основанная на использовании электронно-вычислительной техники, представляет собой комплексную систему автоматизации учетного процесса, начиная со сбора

первичных данных до получения бухгалтерской отчетности. В основу этой формы заложен главный элемент метода бухгалтерского учета – ведение документации. Но группировка и обобщение учетной информации производится с помощью вычислительных машин. Нормативно-справочная информация вводится в ЭВМ в виде справочников до начала работы, текущая информация – с первичных документов либо со специальных регистраторов учетных данных (например, с контрольно-кассовых аппаратов). Обработка учетных данных производится по специальным программам, в соответствии с которыми полученная информация может храниться, поступать в обработку, выдаваться на экран или распечатываться по запросу в виде любого документа, содержащего систематическую или хронологическую запись. Бухгалтерия получает распечатанные регистры различного содержания, соответствующие требуемым нормам ведомости, карточки, книги и др.

 

В условиях применения различных видов электронно-вычислительной техники, периферийных устройств, ориентации предприятий на совершенствование управления и развитие рыночной экономики АФБУ получает все более широкое распространение.

АФБУ основана на следующих методологических принципах:

1. Сохранение метода двойной записи при отражении хозяйственных операций. Одновременная запись производимой хозяйственной операции по дебету и кредиту корреспондирующих счетов способствует систематизации хозяйственных операций и обеспечивает действенный контроль за правильностью отражения их на счетах бухгалтерского учета.

2. Разукрупнение объектов учета (единиц наблюдения), что дает возможность получать информацию не только по объекту в целом, но и по отдельным его частям: по конкретному поставщику материалов, конкретному покупателю продукции и т. п. Это особенно важно в условиях развития рыночных отношений, когда большое внимание администрации уделяется не только результатам деятельности своего предприятия, но и других предприятий, фирм и т. д.

3. Обеспечение автоматического ввода различных данных о хозяйственных операциях (исходной информации) в ЭВМ с документов, через систему периферийного оборудования (различные счетчики, датчики и др.). При этом необходима ориентация на ввод минимального количества первичной (исходной) информации, которая бы в максимальной степени удовлетворяла потребности различных пользователей информации.

4. Обработка на ЭВМ первичной (исходной) информации хозяйственных операций с помощью разных программ с учетом решения конкретных задач в зависимости от требований пользователей информации.

5. Получение на основе обработки информации сформированного банка данных, использование которого на разных уровнях управления создает перспективу обеспечения ведения учета в запросно-ответном режиме исходя из потребностей пользователя в информации.

6. Дифференциация объемов учетной информации по объектам управления и обеспечение ее совместимости и взаимосвязи, что достигается применением системы группировочных показателей и признаков (например, группировочный признак — номенклатурный номер материала, табельный номер работника предприятия, номенклатурный номер вида продукции, код склада материалов, код цеха основного производства и т. п.). Этот принцип означает также, что из общего объема показателей разным пользователям нужна различная информация для подготовки, обоснования и принятия соответствующих управленческих решений (так, руководителю предприятия для управления нужны сведения о ежедневном объеме реализованной продукции, о поступлении оплаты за нее, о наличии средств предприятия на счетах в банках и др.; бригадиру участка необходимо располагать данными о наличии материалов на каждом рабочем месте, количестве выработанной продукции за смену, численности рабочих, занятых в каждую смену и т. п.).

7. Обеспечение условий для автоматического исчисления себестоимости продукции по ее конкретным видам, а также по видам выполняемых работ, оказываемых услуг.

8. Обеспечение выдачи информации, необходимой для составления всех видов отчетности (месячной, квартальной, годовой) и оперативного управления предприятием.

9. Обеспечение согласованности всех видов учета: бухгалтерского, оперативно-технического и статистического.

Соблюдение перечисленных принципов позволяет создать эффективную автоматизированную форму бухгалтерского учета, ориентированную на возможности различных ЭВМ, автоматизированных систем, отвечающую потребностям управления и рынка.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.