Здавалка
Главная | Обратная связь

Геометрические измерения.



 

Показатель Ед. Измерения Описание
    HRV triangular index   Total number of all NN intervals divided by the height of the histogram of all NN intervals measured on a discrete scale with bins of 7.8125 ms (1/128 seconds). (Общее число RR интервалов, распределенных, вершинами гистограммы всех RR интервалов на дискретной шкале с шагом 7.8125 мс.)
  TINN   ms Baseline width of the minimum square difference triangular interpolation of highest peak of the histogram of all NN intervals. (Минимальная длительность отрезка гистограммы RR интервалов, соответствующая основанию площади участка, связанного с наивысшей вершиной).
  Differential index     ms Difference between the widths of the histogram of differences between adjacent NN intervals measured at selected heights. (Разница между отрезками гистограммы, отражающими различия между смежными RR интервалами, измеренными в отобранных высотах.)

 

TINN (triangular interpolation of NN interval histogram ) треугольная интерполяция гистограммы NN интервалов определяется, как ширина основания треугольника, аппроксимирующего распределение NN интервалов (треугольник вычисляется методом наименьших квадратов). Подробности получения треугольного индекса ВСР и TINN представлены на Рис. 2. Оба показателя отражают ВСР, полученную за 24 часа, но вбольшей степени на них влияют низкие, чем высокие частоты [17]. Другие геометрические методы до сих пор находятся в стадии исследований.

Основное преимущество геометрических методов заключается в их сравнительно слабой чувствительности к качеству серии NN интервалов [20]. Главный недостаток состоит в необходимости использования достаточно большой серии NN интервалов, чтобы получить необходимое геометрическое построение. На практике, необходимо использовать по крайней мере 20-ти минутную запись (предпочтительно 24-х часовую) для корректного применения геометрического метода, т.о. эти геометрические методы не подходят для оценки короткопериодических изменений ВСР.

 

Итоги и рекомендации.

Разновидности оценок ВСР во временной области сведены в Таблицу 1. Т.к. многие оценки сильно коррелируют между собой, то для анализа ВСР во временной области рекомендуется использовать следующие 4 из них: SDNN (оценивает полную ВСР); треугольный индекс ВСР (оценивает полную ВСР); SDANN (оценивает долгопериодические компоненты ВСР) и RMSSD (оценивает короткопериодические компоненты ВСР). Рекомендованы две оценки полной ВСР, т.к. треугольный индекс дает только вероятностную предварительную оценку ЭКГ сигнала. Показатель RMSSD предпочтителен по сравнению с pNN50 и NN50, т.к. обладает лучшими статистическими свойствами.

Показатели выражающие общую ВСР и ее короткопериодические и длиннопериодические компоненты не могут подменять друг друга. Выбираемые показатели должны соответствовать цели исследования. Показатели, рекомендуемые для клинической практики представлены в главе «Клиническое использование вариабельности сердечного ритма».

Различия должны быть сделаны между показателями, полученными на прямых измерениях NN интервалов или мгновенных величинах ЧСС и показателями, основанными на дифференциальных последовательностях NN интервалов.

Недопустимо сравнивать показатели (особенно общей ВСР), полученные по реализациям разной продолжительности.

Другие практические рекомендации перечислены в разделе по требованиям к регистрации сигналов и предложениями, касающимися частотного анализа ВСР.

 

 

Частотные методы.

Различные методы спектрального анализа тахограмм применяются с конца 60-х годов. Анализ спектральной плотности мощности позволяет получить основную информацию о распределении мощности (т.е. вариабельности в зависимости от частоты). Независимо от использованного метода, только оценка истинной мощности спектральной плотности может быть получена при использовании подходящего математического алгоритма.

Методы вычисления МСП можно разделить на непараметрические и параметрические. Преимущества непараметрических методов следующие: а) простота применяемого алгоритма ( быстрое преобразование Фурье БПФ - в большинстве случаев) и б) высокая скорость обработки, тогда, как преимущества параметрических методов состоят в следующем: а) более гладкие спектральные компоненты, которые могут вычисляться независимо от определенной частоты линий, б) более простая последующая обработка спектра для автоматического вычисления высокочастотных и низкочастотных компонент мощности и более простое определение центральной частоты каждой компоненты, в) в точная оценка МСП даже по короткой реализации, если она стационарна. Основной недостаток параметрического метода- необходимость проверки адекватности выбранной модели и ее сложности ( т.е. порядок модели).

 

Спектральные составляющие.

Кратковременные записи. Три главных спектральных составляющих выделяются в спектрах, вычисленных по кратковременным записям длительностью от 2 до 5 мин. [7,10,13,15,24]: особо низкочастотные VLF (very low frequency), низкочастотные LF (low frequency) и высокочастотные HF (high frequency) компоненты. Распределение мощности и центральная частота LF и HF не фиксируется и может варьироваться в зависимости от изменения модуляции сердечного ритма вегетативной нервной системой. [12,24,25]. Физиологическое объяснение VLF компоненты в значительной степени отсутствует и наличие какого-либо физиологического процесса, определяющего изменения сердечного ритма такой периодичности должно быть выяснено. Негармонические компоненты, которые не имеют когерентных свойств и которые симулируются поведением средней линии или смещением тренда обычно принимаются за главные составляющие VLF. Т.о., VLF компонента, полученная из кратковременной записи (т.е. < 5 мин.) является сомнительной оценкой и должна быть устранена при интерпретации МСП кратковременной записи. VLF, LF и HF компоненты обычно измеряются в абсолютных величинах мощности (мсек2), но могут, также, измеряться и в нормализованных единицах (n.u.) [15,24], которые представляют относительные значения каждой спектральной компоненты по отношению к общей мощности за вычетом VLF компоненты.

Представление LF и HF в n.u. подчеркивает поведение и баланс двух ветвей вегетативной нервной системы. Более того, нормализация способствует минимизации эффекта от изменения в общей мощности на изменение LF и HF компонент (рис.3.).

Тем не менее, п.и. должны всегда сопоставляться с абсолютными значениями мощности LF и HF для того, чтобы описать общее определение мощности спектральных компонент.

 

Долговременные записи.Спектральный анализ, также, может быть использован для анализа последовательности NN интервалов за 24-часовой период. Тогда результат будет включать сверх низкочастотные компоненты (ULF- ultra-low frequency), в дополнение к VLF, LF и HF компонентам. 24-х часовой спектр может быть представлен в логарифмическом масштабе. В таблице 2 представлены параметры частотных методов анализа.

Проблема ’стационарности ’ часто обсуждаются при использовании долговременных записей. Если механизмы определяющие модуляцию сердечного ритма на определенной частоте остаются неизменными во время всего времени записи, то соответствующий частотный компонент ВСР можно использовать для описания этих модуляций. Если модуляции нестабильны, то результаты частотного анализа не определены. В частности, физиологические механизмы определяющие модуляции LF и HF компонент сердечного ритма не могут считаться стационарными в течении 24-х часового периода [25]. Таким образом, спектральный анализ полной 24-х часовой последовательности, также, как и результаты, полученные усреднением более коротких последовательностей (например, 5 минутных) за 24 часа (LF и HF компоненты этих двух вычислений не отличаются [26,27]) дает усреднение модуляции, приписываемой LF и HF компонентами (рис.4). Такое усреднение затемняет детальную информацию о модуляции RR интервалов вегетативной нервной системы, которая допустима при обработке кратковременных записей [25]. Следует учитывать, что компоненты ВСР позволяют оценить скорее степень модуляции вегетативной нервной системы, чем уровень ее тонуса[28] и усреднение модуляции не представляет усредненного уровня тонуса.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.