Здавалка
Главная | Обратная связь

Диэлектрики. Типы диэлектриков и их поляризация



Электрический диполь. Диполь во внешнем электрическом поле

До сих пор предполагалось, что заряды и их поля находятся в вакууме. В последующих параграфах мы рассмотрим, какое влияние на электрическое поле и на взаимодействие электрических зарядов оказывает вещественная среда - проводники и диэлектрики.

Электрический диполь это система, состоящая из двух одинаковых по значению, но разных по знаку точечных заряда (+q,- q), расстояние ℓ между которыми (плечо диполя) значительно меньше расстояния до рассматриваемых точек поля (рис.12.16).

Основной характеристикой диполя является его электрический, или дипольный момент.

Дипольный момент –это вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный произведению заряда │q│ на плечо ℓ.

(12.35)

Единица электрического момента диполя – кулон-метр (Кл۰м).

Если диполь поместить в однородное электростатическое поле напряжён-ностью Е (рис.12.17), то на каждый из его зарядов действует сила: на положительный F+ = +qE, на отрицательный F- = - qE. Эти силы равны по модулю, но противоположны по направлению. Они образуют пару сил, плечо которой ℓsinα, и создают момент пары сил М. Вектор направлен перпендикулярно векторам и (см.рис. – на нас). Модуль определяется соотношением M=qEℓsinα, где α – угол между векторами и .

M=qEℓsinα=рЕsinα

или в векторной форме

(12.36)

Таким образом, на диполь в однородном электрическом поле действует вращающий момент, зависящий от электрического момента, ориентации диполя в поле и напряжённость поля.

В однородном поле момент пары сил стремится повернуть диполь так, чтобы векторы и и были параллельны.

 

Поле диполя

Определим напряжённость электростатического поля в точке, лежащей посередине на оси диполя (рис.12.18). Напряжённость поля в точке О равна векторной сумме напряжённостей и , создаваемых положительным и отрицательным зарядом в отдельности.

На оси диполя между зарядами -q и +q векторы напряжённости и направлены в одну сторону, поэтому результирующая напряжённость по модулю равна их сумме.

Если же находить напряжённость поле в точке А, лежащей на продолжении оси диполя (рис.12.18), то векторы и будут направлены в разные стороны и результирующая напряжённость по модулю равна их разности:

Или

(r - расстояние между средней точкой диполя и точкой, лежащей на оси диполя, в которой определяется напряжённость поля).

Пренебрегая в знаменателе величиной , так как r >>ℓ получим

или (12.37)

(р- электрический момент диполя).

Напряжённость поля в точке С, лежащей на перпендикуляре, восстановленном из средней точки диполя (рис.12.19). Так как расстояние от зарядов +q и - q до точки В одинаковое r1 = r2 , то

Вектор результирующей напряжённости в точке В по модулю равен

Из рисунка видно, что , тогда

Так как r >>ℓ, то можно приближённо считать r1 ≈ r, тогда формула для расчёта напряжённости в точке, лежащей на перпендикуляре, остановленном из средней точки диполя, имеет вид

(12.38)

Напряжённость поля диполя в произвольной точке определяется по формуле

(12.39)

(р- электрический момент диполя, r - расстояние от центра диполя до точки, в которой определяется напряжённость поля, α - угол между радиус-вектором r и плечом диполя ℓ).

 

Диэлектрики. Типы диэлектриков и их поляризация

В 1729 г. английский физик Стефан Грей обнаружил, что электрический заряд может перемещаться по одним телам и не перемещаться по другим. Например, по металлической проволоке электричество в его опытах распространялось, а по шелковой нити нет. С тех пор все вещества стали делиться на проводники и непроводники электричества. Последние были названы Фарадеем диэлектриками.

Введённый Фарадеем в 1837 г. термин «диэлектрики» образован от двух слов - греческого «диа» (что значит «через») и английского electric (электрический).

Диэлектриком называют вещество, которое не проводит электрический ток, следовательно в это веществе отсутствуют свободные заряженные частицы (т.е. таких заряженных частиц, которые способны свободно перемещаться по всему объёму тела). Такими частицами могли бы быть электроны, но в идеальном диэлектрике все электроны связаны с ядром атома, т.е. принадлежат отдельным атомам, и свободно перемещаться по телу не могут. Чтобы нарушить эту связь, нужны сильные воздействующие факторы.

Диэлектрики обладают способностью пропускать через себя электростатическое поле. Проникая через диэлектрики электростатическое поле ослабевает, но всё-таки не до нуля, как это происходит в металлах.

Диэлектриками могут быть вещества в трёх агрегатных состояниях: газообразном (азот, водород), жидком (чистая вода), твёрдом (янтарь, фарфор, кварц).

Всякая молекула представляет собой систему с суммарным зарядом, равным нулю. Поведение молекулы во внешнем электрическом поле эквивалентно диполю. Положительный заряд такого диполя равен суммарному заряду ядер, помещён в «центр тяжести» положительных зарядов; отрицательный заряд равен суммарному заряду электронов и помещён в «центр тяжести» отрицательных зарядов.

Все диэлектрики делятся на три группы: полярные, неполярные и кристаллические.

· Полярные диэлектрикисостоят из молекул,которыеимеют асимметричное строение, что приводит к несовпадению «центров тяжести» положительных и отрицательных зарядов в молекуле (рис.12.20). Молекула в этом случае представляет собой диполь. В отсутствие внешнего поля Е0,благодаря тепловому движению молекул, дипольные моменты ориентированы хаотически и суммарный дипольный момент всех молекул равен нулю . К таким диэлектрикам относятся фенол, нитробензол.

· Неполярные диэлектрики состоят из атомов и молекул, которые имеют симметричное строение (рис.12.21) , т.е. «центры тяжести» положительных и отрицательных зарядов совпадают в отсутствие внешнего электрического поля и, следовательно, не обладают собственным дипольным моментом. К ним относят инертные газы, бензол, парафин, водород, кислород.

 

· Кристаллические диэлектрикиимеют ионную структуру, - это слабополярные диэлектрики. К ним относятся NaCl, KCl.

При помещении диэлектрика в электрическое поле в его объёме и на поверхности появляются макроскопические заряды. Указанные заряды возникают в результате поляризации диэлектриков.

Поляризацией диэлектрика называется процесс ориентации диполей, т.е. смещение положительных и отрицательных зарядов внутри диэлектрика в противоположные стороны.

Трём группам диэлектриков соответствует три вида поляризации.

Дипольная (ориентационная) поляризация.Приотсутствии внешнего поля дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично и их результирующий момент равен нулю (рис.12.22, а) . Если такой диэлектрик поместить во внешнее поле (рис.12.22, б) , то силы этого поля будут стремится повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент. Эта ориентация дипольных моментов молекул по полю тем сильнее, чем больше напряжённость электрического поля и ниже температура.

Электронная поляризация. Если неполярную молекулу поместить во внешнее электрическое поле Е0, то под действием электрического поля происходит деформация её электронных орбит и молекулы диэлектрика превращаются в диполи, сразу ориентированные вдоль внешнего поля (ядра молекулы при этом смещаются по полю, а электронная оболочка вытягивается против поля и молекула приобретает дипольный момент

(рис. 12.23).

Ионная поляризация. Если кристаллический диэлектрик (NaCl) имеющий кристаллическую решётку, в узлах которой правильно чередуются положительные и отрицательные ионы, поместить во внешнее электрическое поле Е0, то произойдёт смещение положительных ионов решётки вдоль направления поля, а отрицательных ионов – в противоположную сторону. В результате диэлектрик поляризуется.

Такого рода поляризация называется ионной. Степень ионной поляризации зависит от свойств диэлектрика и от напряжённости поля.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.