Здавалка
Главная | Обратная связь

Вектор электрической индукции. Теорема Гаусса для электростатического поля в диэлектрике



Наиболее сложным оказывается изучение электрических явлений в неоднородной электрической среде. В такой среде ε имеет различные значения, изменяясь на границе диэлектриков скачкообразно. Предположим, что мы определяем напряжённость поля на границе раздела двух сред: ε1 =1 (вакуум или воздух) и ε2 =3 (жидкость – масло). На границе раздела при переходе из вакуума в диэлектрик напряжённость поля уменьшается в три раза, во столько же раз уменьшается поток вектора напряжённости (рис.12.25, а). Скачкообразное изменение вектора напряжённости электростатического поля на границе раздела двух сред создаёт определённые трудности при расчёте полей. Что касается теоремы Гаусса, то в этих условиях она вообще теряет смысл.

Так как поляризуемость и напряжённость разнородных диэлектриков различна, различным будет и число силовых линий в каждом диэлектрике. Это затруднение можно устранить, введя новую физическую характеристику поля электрическую индукцию D (или вектор электрического смещения).

Согласно формуле

ε1Е1= ε2Е20=const

Умножая все части этих равенств на электрическую постоянную ε0 получим

ε0 ε1Е1= ε0 ε2Е20 Е0=const

Введём обозначение ε0 εЕ=D тогда предпоследнее соотношение примет вид

D1= D2=D0=const

Вектор D, равный произведению напряжённости электрического поля в диэлектрике на его абсолютную диэлектрическую проницаемость, называют вектором электрического смещения

(12.45)

v Единица электрического смещения – кулон на квадратный метр(Кл/м2).

Электрическое смещение – векторная величина, её можно выразить ещё как

D = εε0E =(1+χ)ε0 E = ε0 E + χε0 E = ε0 E+P

(12.46)

В отличие от напряжённости Е электрическое смещение D постоянно во всех диэлектриках (рис.12.25, б). Поэтому электрическое поле в неоднородной диэлектрической среде удобно характеризовать не напряжённостью Е, а вектором смещения D . Вектором D описывается электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика, так как связанные заряды, возникающие в диэлектрики, могут вызвать, перераспределение свободных зарядов создающих поле.

Поле вектора графически изображается линиями электрического смещения точно так же, как поле изображается силовыми линиями.

Линия электрического смещения – это линии, касательные к которым в каждой точке совпадают по направлению с вектором электрического смещения.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах – свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Линии вектора D в отличие от линий напряжённости непрерывны.

Так как вектор электрического смещения не испытывает разрыва на границе раздела двух сред, то все линии индукции, исходящие из зарядов, окружённых некоторой замкнутой поверхностью, пронижут её. Поэтому для вектора электрического смещения теорема Гаусса полностью сохраняет свой смысл и для неоднородной диэлектрической среды.

Теорема Гаусса для электростатического поля в диэлектрике: поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов заключенных внутри этой поверхности.

(12.47)

 

Сегнетоэлектрики

Сегнетоэлектриками называется группа кристаллических диэлектриков, у которых в отсутствии внешнего электрического поля возникает спонтанная ориентация дипольных моментов молекул входящих в состав кристаллической решётки, т.е. поляризованность. К сегнетоэлектрикам относятся, например, детально изученные И.В.Курчатовым (1903 —1960) и П. П. Кобеко (1897-1954) сегнетова соль NaKC4H4O6 • 4Н2О (от нее и получили свое название сегнетоэлектрики) и титанат бария ВаТIO3.

При отсутствии внешнего электрического поля сегнетоэлектрик представляет собой как бы мозаику из доменов - областей с различными направлениями поляризованности. Это схематически показано на примере титаната бария (рис. 12.26), где стрелки и знаки указывают направление вектора Р. Так как в смежных доменах эти направления различны, то в целом дипольный момент диэлектрика равен нулю. При внесении сегнетоэлектрика во внешнее поле происходит переориентация дипольных моментов доменов по полю, а возникшее при этом суммарное электрическое поле доменов будет поддерживать их некоторую ориентацию и после прекращения действия внешнего поля. Поэтому сегнетоэлектрики имеют аномально большие значения диэлектрической проницаемости (для сегнетовой соли, например, εmах ≈ 104). Сегнетоэлектрические свойства сильно зависят от температуры. Для каждого сегнетоэлектрика имеется определенная температура, выше которой его необычные свойства исчезают и он становится обычным диэлектриком. Эта температура называется точкой Кюри. Как правило, сегнетоэлектрики имеют только одну точку Кюри; исключение составляют лишь сегнетова соль (-18 и +24 °С) и изоморфные с нею соединения. Диэлектрическая проницаемость ε (а следовательно, и диэлектрическая восприимчивость ϰ) сегнетоэлектриков зависит от напряженности поля в веществе, а для других диэлектриков эти величины являются характеристиками

вещества. Для сегнетоэлектриков формула Р= ϰε0Е не соблюдается; для них связь между векторами поляризованностью (Р) и напряженности (Е) нелинейная и зависит от значений Е в предшествующие моменты времени. В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса («запаздывания»).

Как видно из рис. 12.27, с увеличением напряженности Е внешнего электрического поля поляризованность Р растет, достигая насыщения (кривая 1).

Уменьшение Р с уменьшением Е происходит по кривой 2, и при Е -= 0 сегнетоэлектрик сохраняет остаточную поляризованность Рж, т.е. сегнетоэлектрик остается поляризованным в отсутствие внешнего электрического поля. Чтобы уничтожить остаточную поляризованность, надо приложить электрическое поле обратного направления (-Ес). Величина Ес называется коэрцитивной силой (от лат. coercitio — удерживание). Если далее изменять Е, то Р изменяется по кривой 3 петли гистерезиса.

Интенсивному изучению сегнетоэлектриков послужило открытие академиком Б.М.Вулом (1903—1985) аномальных диэлектрических свойств титаната бария. Титанат бария из-за его химической устойчивости и высокой механической прочности, а также из-за сохранения сегнетоэлектрических свойств в широком температурном интервале нашел большое научно-техническое применение (например, в качестве генератора и приемника ультразвуковых волн). В настоящее время известно более сотни сегнетоэлектриков, не считая их твердых растворов. Сегнетоэлектрики широко применяются также в качестве материалов, обладающих большими значениями ε (например, в конденсаторах).

Некоторые кристаллы (кварц, турмалин и др.) поляризуются при механической деформации. При сжатии пластинки такого кристалла, вырезанной в определенном направлении, её плоскости оказываются разноимённо заряженными и внутри пластинки возникает электрическое поле. При растяжении пластинки её полярность и направление поля изменяются на противоположные. Это явление называют пьезоэлектрическим эффектом, а соответствующие вещества -пьезоэлектриками. Пьезоэлектрических эффект используется в технике для измерения быстро меняющихся давлений и для исследования ультразвуковых колебаний. Пьезокварц применяется для стабилизации высокочастотных электрических колебаний, поскольку частота собственных механических колебаний пьезокварца характеризуется очень устойчивым постоянством.

Наблюдается и обратный пьезоэффект — появление механической деформации под действием электрического поля. У некоторых пьезоэлектриков решетка положительных ионов в состоянии термодинамического равновесия смещена относительно решетки отрицательных ионов, в результате чего они оказываются поляризованными даже без внешнего электрического поля. Такие кристаллы называются пироэлектриками.

Еще существуют электреты — диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электрического поля (электрические аналоги постоянных магнитов). Эти группы веществ находят широкое применение в технике и бытовых устройствах.

При нормальных условиях диэлектрик обладает незначительной электропроводностью. Это свойство сохраняется, пока напряженность электрического поля не увеличится до некоторого предельного для каждого диэлектрика значения.

В сильном электрическом поле происходит расщепление молекул диэлектрика на ионы и тело, которое в слабом поле было диэлектриком, становится проводником.

Напряженность электрического поля, при которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика. Величина напряженности электрического поля, которая допускается в диэлектрике при его использовании в электрических установках, называется допустимой напряженностью. Допустимая напряженность обычно в несколько раз меньше пробивной. Отношение пробивной напряженности к допустимой определяет запас прочности.

 

Лучшими непроводниками (диэлектриками) являются вакуум и газы, особенно при высоком давлении.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.