Здавалка
Главная | Обратная связь

Итак, ни корпускулярная теория, ни волновая в полной мере не описывают известные свойства света; свет не является ни частицей, ни волной в отдельности.



Оптика

О природе света. Основные законы оптики были установлены давно. Так, закон отражения света упоминался уже в сочинениях Евклида, а современная формулировка закона преломления принадлежит Декарту (около 1630). Однако точка зрения на природу света менялась на протяжении времени.

Практически одновременно возникли две теории света, связанных с именами Ньютона и Гюйгенса. Согласно Ньютону свет представлял собой поток неких световых частиц. Прямолинейное распространение света в этом случае объясняется тем, что свободные частицы движутся по прямой линии по инерции. Отражение света понималось аналогично отражению упругого шарика. Преломление Ньютон объяснял притяжением световых частиц преломляющей средой, благодаря чему меняется скорость световых частиц при переходе из одной среды в другую. Из этой теории следует, что в оптически более плотной среде скорость света больше. Впоследствии было установлено, что скорость света в оптически более плотной среде меньше, чем скорость света в менее плотной (например, скорость света в воде меньше чем в воздухе). Кроме того, было обнаружено, что свет проявляет волновые свойства, такие как интерференция и дифракция. Следовательно, теория световых частиц не может быть признана удовлетворительной.

Современник Ньютона Гюйгенс предложил другую теорию света. Он исходил из аналогии между многими акустическими и оптическими явлениями. Свет рассматривался как упругие колебания, распространяющиеся в особой среде – в эфире, заполняющем все пространство. Эфир наделялся механическими свойствами (упругость, плотность). Эти свойства менялись в зависимости от среды, чем объяснялась зависимость фазовой скорости световой волны от среды распространения. Направление распространения световых волн определялось с помощью приема, названного принципом Гюйгенса.

Принцип Гюйгенса можно сформулировать следующим образом: Каждая точка, до которой доходит световое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

В таком виде принцип Гюйгенса позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Причем оказалось, что теория дает правильную зависимость скорости света от оптической плотности среды.

В дальнейшем, с развитием теории электромагнетизма было установлено, что свет представляет собой электромагнитную волну, а с развитием представлений о пространстве и времени (теория относительности) отпала надобность в эфире, в котором распространяются электромагнитные колебания.

Однако, несмотря на достижения волновой теории света в объяснении различных явлений, выявились и ее затруднения. Это, в частности, затруднения, связанные с особенностями излучения и поглощения света веществом. В этих процессах свет ведет себя как поток частиц, поскольку испускание и поглощение света происходит порциями. Аналогично, распределение энергии по длинам волн в излучении абсолютно черного тело также предполагает дискретность электромагнитного излучения. Дискретность чужда волновой теории, в которой все непрерывно.

Итак, ни корпускулярная теория, ни волновая в полной мере не описывают известные свойства света; свет не является ни частицей, ни волной в отдельности.

С возникновением квантовой теории и признании корпускулярно-волнового дуализма материи возникают успешные попытки синтеза волновых и корпускулярных представлений. Свет (и не только) рассматривается теперь как объект, отличающийся от частицы и волны, как нечто, проявляющее и волновые и корпускулярные свойства. Современное развитие теории света дается в настоящее время квантовой электродинамикой, изучение которой выходит далеко за рамки данного курса.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.