Здавалка
Главная | Обратная связь

Групповая скорость. Рассмотрим две плоские волны одинаковой амплитуды и близкими l. Напишем уравнения этих волн, считая начальные фазы равными нулю



,

.
Здесь , . Пусть , соответственно . При наложение таких волн, получается волна, которая имеет вид


(во втором множителе опущены малые члены, имеющие порядок Dw и Dk).

Первый множитель изменяется с x и t значительно медленнее, чем второй. Поэтому результирующую волну можно рассматривать как плоскую с переменной амплитудой

.
Ее можно рассматривать также как набор волновых пакетов с границами . Эти волновые пакеты, как нетрудно видеть, перемещаются со скоростью

. (5)
Полученное выражение представляет собой групповую скорость для группы, образованной двумя составляющими.

Реальный сигнал, представляющий собой импульс или их последовательность, можно рассматривать как суперпозицию монохроматических волн ограниченного интервала частот (волновой пакет). Соответствующий анализ показывает, что импульс (волновой пакет) распространяется со скоростью

. (6)
Выражению (6) можно придать другой вид. Заменив w на vk, получим

. (7а)
Из соотношения вытекает, что . Подставив это значение в (7а), получим

. (7б)
В зависимости от знака групповая скорость u может быть как меньше, так и больше фазовой скорости. В отсутствие дисперсии и групповая скорость совпадает с фазовой.

Максимум интенсивности приходится на центр группы волн. Поэтому скорость переноса энергии волной совпадает с групповой скоростью. Понятие групповой скорости как скорости переноса энергии применимо, если поглощение энергии волны невелико. Так, в области аномальной дисперсии поглощение очень велико и понятие групповой скорости здесь утрачивает смысл.

Электронная теория дисперсии. Взаимодействие света и вещества определяется взаимодействием электрического поля световой волны с электронами (и ионами) вещества. Из электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

,
где e – диэлектрическая проницаемость среды, m – магнитная проницаемость. Для большинства веществ m практически равно единице, поэтому

. (8)

Таким образом, зависимость показателя преломления от длины волны найдется из зависимости диэлектрической проницаемости от частоты переменного электрического поля. Будем считать, что в отсутствие внешнего поля электроны и ионы, образующие молекулы или атомы диэлектрика, находятся в состоянии равновесия. Под влиянием электрического поля эти заряды смещаются из положения равновесия – молекулы или атомы поляризуются. Для простоты положим, что в среде имеется лишь один сорт атомов и в каждом из них способен смещаться только один электрон. Наведенный дипольный момент атома равен , где e – заряд электрона, r – его смещение от положения равновесия. Если концентрация атомов в диэлектрике равна na, то поляризация среды

. (9)
Зная электрическую поляризацию среды, можно вычислить ее диэлектрическую проницаемость. По определению вектор электрической индукции , поэтому . С помощью (8) и (9) получим

. (10)
Задача сводится, таким образом, к определению смещения r электрона под действием внешнего поля E. Для монохроматической световой волны это поле является гармонической функцией времени, т.е.

. (11)

Будем считать, что электрон в атоме удерживается упругой силой. Это значит, что электрон, выведенный из равновесия, совершает свободные колебания с частотой , где k – константа упругой связи, m – масса электрона. Под действием внешней гармонической силы электрон совершает вынужденные колебания с частотой внешней силы. Колебания электрона описываются уравнением

,
решение которого имеет вид

, (12)
где .
Подставляя (11) и (12) в (10) получим

. (13)
Если в атоме или молекуле вещества имеется несколько сортов зарядов (с зарядом и массой ), способных совершать колебания с собственными частотами , то

. (14)

Таким образом, простая модель взаимодействия света с веществом объясняет явление дисперсии света и определяет функциональную зависимость . При наличии одной собственной частоты (показатель преломления меняется по закону (13)) график зависимости имеет вид, изображенный на рис. В области n больше единицы и возрастает с увеличением w (нормальная дисперсия). В области n меньше единицы и растет с частотой w (нормальная дисперсия). Вблизи собственной частоты терпит разрыв и становится мнимой (этот случай соответствует поглощению света). Такое поведение показателя преломления обусловлено тем, что в расчете не учитывалось трение (трение излучения и др. факторы). Учет сил трения приводит к зависимости вблизи , показанной на рис. штриховой линией AB. Область AB – область аномальной дисперсии (n убывает при возрастании w).

Перейдя от w к l получим кривую, изображенную на рис. Участки 12 и 34 соответствуют нормальной дисперсии ( ). На участке 23 дисперсия аномальна ( ). Пунктирная кривая на этом рис. изображает ход коэффициента поглощения света веществом. Поглощение наиболее выражено в области аномальной дисперсии. Такое совпадение неслучайно, поскольку поглощение света становится особенно интенсивным при резонансной частоте.

Поглощение (абсорбция) света. При прохождении световой волны через вещество часть энергии волны затрачивается на возбуждение и поддержание колебаний электронов. Частично эта энергия возвращается излучению в виде вторичных волн, порождаемых электронами; частично же она переходит в энергию движения атомов, т.е. во внутреннюю энергию вещества. Поэтому интенсивность света при прохождении через вещество уменьшается – свет поглощается в веществе. Это явление называется поглощением или абсорбцией света.

Поглощение света в веществе описывается законом Бугера

,
где I0 и I – интенсивности плоской монохроматической волны на входе и выходе слоя поглощающего вещества толщиной l, a – коэффициент поглощения.

Коэффициент поглощения зависит от длины волны l и индивидуален для каждого вещества. Например, одноатомные газы (атомы которых можно считать изолированными, поскольку они находятся на значительных расстояниях друг от друга) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10–12–10–11 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах.

В случае многоатомных газов обнаруживаются частоты поглощения, соответствующие колебаниям атомов внутри молекул. Спектр поглощения таких газов имеет вид линейчатых полос (полосы поглощения шириной 10–10–10–7 м). Молекулу можно рассматривать как систему связанных осцилляторов, у которых наряду с жесткими связями (электронов с атомами) имеются более мягкие связи (между отдельными атомами молекулы). Поэтому молекула обладает набором близко расположенных собственных частот колебаний, которые обуславливают линейчатые полосы поглощения (а не одиночные линии как у одноатомных газов).

Коэффициент поглощения диэлектриков невелик (примерно 10–3–10–5 см–1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда a резко возрастает, и наблюдаются сплошные полосы поглощения (сплошной спектр поглощения). Расширение отдельных линий, соответствующих собственным частотам атомов и молекул диэлектрика, до сплошной полосы поглощения обусловлено взаимодействием молекул друг с другом (добавляются еще более мягкие связи молекул между собой, в результате чего возникают дополнительные близко расположенные частоты собственных колебаний).

Коэффициент поглощения металлов имеет большие значения (примерно 103–105 см–1) и поэтому металлы являются непрозрачными для света. В металлах, из-за наличия свободных электронов, под действием электрического поля возникают быстропеременные токи. Энергия световой волны быстро уменьшается, переходя, из-за выделения джоулевой теплоты, во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители и т.д.) пропускают свет только определенных длин волн, поглощая остальные.

Явление поглощения используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного анализа веществ.

Рассеяние света. Свет, проходя вещество, вызывает колебания электронов в атомах. Колеблющиеся электроны излучают вторичные волны, распространяющиеся по всем направлениям. В случае однородной среды, согласно расчетам, вторичные волны полностью гасят друг друга во всех направлениях, кроме направления распространения первичной волны. Поэтому в идеально однородных средах рассеяния света не происходит. Вторичные волны не погашают друг друга только при распространении света в неоднородной среде. Результирующая интенсивность имеет довольно равномерное распределение по направлениям. В случае среды без посторонних включений источником оптических неоднородностей являются флуктуации плотности. Эти флуктуации вызваны тепловым движением молекул вещества. Таким образом, процесс рассеяние света сводится к генерации вторичных волн молекулами или частицами включений под действием света. Для сплошной среды рассеяние, по сути, является дифракцией волн на неоднородностях среды.

Характер рассеяния зависит от размеров неоднородностей. Если размеры неоднородностей малы по сравнению с длиной волны (не более ~0,1l), интенсивность рассеянного света I

.
Эта зависимость носит название закона Рэлея. Ее происхождение связана с характером излучения электрического диполя (интенсивность излучения которого ). Особен­ностями излучения диполя объясняется также частичная поляризация рассеянного света. Рассеянный свет преимущественно поляризован в направлении, перпен­дикулярном направлению рассеяния и направлению распространения первичного луча. Полная поляризация наблюдается в направлениях, перпендикулярных пучку.

Рэлеевским рассеянием (на флуктуационных неоднородностях атмосферы) объясняется, например, голубой цвет неба и красноватый цвет Солнца на восходе и заходе. На восходе и заходе наблюдается свет, в котором в результате рассеяния коротковолновая (фиолетовая) часть спектра ослаблена значительно сильнее длинноволновой (красной) части. В результате Солнце воспринимается как красное. Когда Солнце находится в зените и рассеяние невелико (меньше толща атмосферы, проходимой лучами), оно не имеет красного цвета. Однако в рассеянном атмосферой свете преобладает фиолетовая часть спектра, и небо воспринимается голубым.

Тепловое излучение

Первый закон Кирхгофа. Излучение электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение, т.е. испускание электромагнитных волн за счет внутренней энергии тел. Все остальные виды свечения, возбуждаемые за счет любого вида энергии, кроме внутренней (тепловой), объединяются под общим названием люминесценция.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.