Здавалка
Главная | Обратная связь

Термоядерные реакции в крупных масштабах осуществлены пока в испытательных взрывах термоядерных (водородных) бомб.



Использование термоядерных реакций в мирных целях пока не удалось осуществить, хотя идут интенсивные работы по управляемому термоядерному синтезу (УТС), с которым связаны надежды на решение энергетических проблем человечества, поскольку дейтерий содержащийся в морской воде, представляет собой практически неисчерпаемый источник горючего для УТС.

Экологически чистыми являются термоядерные реакции с участием изотопа гелия . Например,


или .
Однако на Земле изотопа гелия практически нет, но зато, предполагают, его много на Луне.

Термоядерные реакции осуществляют в термоядерных реакторах – системах закрытого типа, например, токамак, стелларатор, в которых удержание высокотемпературной плазмы осуществляют магнитным полем (магнитные ловушки) или с использованием импульсного лазера, которые были начаты в 1964 г или мюонный катализ (холодный термоядерный синтез) и др.

Рассмотрим УТС за счет нагрева термоядерной мишени мощными лазерными импульсами. В отличие от систем с магнитным удержанием неплотной высокотемпературной плазмы в этой системе сжатие плазмы до сверхвысоких плотностей, чтобы реакция синтеза легких ядер успела произойти за очень короткое время (микроядерные взрывы), производится лазерными импульсами.

Термоядерная мишень – полый стеклянный или металлический шарик диаметром 0,1-1 мм с толщиной стенок ~10-6 м, наполненный газовой смесью дейтерия и трития под давлением нескольких атмосфер. На эту мишень фокусируют одновременно несколько лазерных импульсов, длительностью ~10-9 с и суммарной энергией 104-105 Дж (рис. 9.5, а). Под действием лазерных импульсов высокой интенсивности ( Вт/см2) происходит бурное (взрывное) испарение оболочки мишени. Возникает, так называемая корона, стремительно расширяющая во все стороны навстречу лазерным импульсам (рис. 9.5, б).

Согласно закону сохранения импульса, внутренние слои мишени стремительно движутся к центру, сжимаясь, уплотняясь и нагреваясь до температуры, необходимой для термоядерного синтеза дейтерия с тритием (рис. 9.5, б). В результате термоядерной реакции удалось получить поток нейтронов до 106 на один микровзрыв.

Радиоактивность. Способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием частиц называют радиоактивностью.

Естественная радиоактивность открыта Беккерелем в 1896 г. Существует около 300 природных радиоактивных ядер. Искусственная радиоактивность впервые наблюдалась в 1934 г Ирен и Фредериком Жолио-Кюри. Искусственно радиоактивных ядер открыто около 2000. Искусственная радиоактивность позволила открыть b+-распад, К-захват и существование запаздывающих нейтронов.

К радиоактивным превращения относятся:a-распад, b-распад (с испусканием электрона b--распад, с испусканием позитрона b+-распад) и К-захват – захват ядром орбитального электрона), спонтанное деление атомных ядер, протонный и двухпротонный распады и др.

В случае b-распада большое время жизни ядер обусловлено природой слабого взаимодействия, ответственного за этот распад. Остальные виды радиоактивных процессов вызваны сильным взаимодействием. Замедление таких процессов связывают с наличием потенциальных барьеров, затрудняющих вылет частиц из ядра.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.