Здавалка
Главная | Обратная связь

Основные лучи рассеивающей линзы



- Луч, параллельный главной оптической оси

преломляясь в линзе, выходит как бы из мнимого главного фокуса

- Луч, падающий в направлении мнимого главного фокуса, находящегося за линзой

после преломления в линзе идет параллельно главной оптической оси

- Луч, идущий через оптический центр тонкой линзы проходит через линзу не преломляясь

 

 

№23. Потери света в объективах.

Светосила характеризует способность объектива создавать освещенность в поле кадра в соответствии с яркостью объекта. На светосилу объектива влияют следующие факторы:

- относительное отверстие объектива;

- прозрачность (коэффициенты пропускания, поглощения, отражения) линз;

- коэффициент увеличения (масштаб получаемого изображения);

- коэффициент падения освещенности к краю кадра.

Светосила без учета реальных потерь света в линзах оценивается величиной геометрического относительного отверстия, равного к=D/F, где D-диаметр входного отверстия объектива (апертура), F-фокусное расстояние, и обозначается в виде 1: к. Эффективное относительное отверстие объектива меньше геометрического на величину потерь света в его линзах. По величине относительного отверстия объективы делятся на сверхсветосильные, у которых 1: к>1:2, светосильные (1: к=1.28-1.4) и малосветосильные с 1: к>1.4. Чем больше светосила объектива, тем выше чувствительность средства наблюдения.

Свет, падающий на линзу и проходящий через нее, отражается и поглощается. Количество поглощенного света зависит от толщины стекла (в среднем 1-2% на 1 см толщины). Чем больше отражающих поверхностей имеет объектив, тем больше потери света. В объективах из 5-7 линз потери света на отражение могут составлять 40-50%. Уменьшают потери света просветлением линз.

Просветлением называются способы уменьшения отражения света от поверхности стекла путем нанесения на него тонкой пленки с коэффициентом преломления меньше преломления стекла линзы. Толщина просветляющей пленки должна составлять 1/4 длины волны падающего на линзу света. В этом случае отраженные лучи света в силу противоположности фаз с падающими компенсируются и, следовательно, отражение света отсутствует. Первоначально объективы просветляли для желто-зеленой части спектра, к которой наиболее чувствителен глаз человека. Просветленный объектив в отраженном свете приобретал сине-фиолетовый оттенок и назывался «голубой» оптикой. Современные технологии просветления оптики позволяют наносить на поверхность линзы 12-14 слоев просветляющих пленок и перекрывать тем самым весь спектр видимого диапазона света. Такую оптику маркируют индексами МС - многослойное покрытие. Объективы МС в отраженном свете не меняют цвет. В настоящее время все объективы просветляются.

 

 

№24. Ограничение световых пучков в объективах.

(только по конспекту нашла)

 

Ограничение световых пучков, проходящих через оптическую систему обусловлено наличием диафрагм.

Апертурная диафрагма – ограничивает пучки лучей идущие и точки предмета находящейся на оптической оси.

Входной и выходной зрачки – это может быть сама апертурная диафрагма так и ее изображение. Изображение ирисовой диафрагмы через переднюю линзу – входной зрачок, через заднюю группу линз – выходной.

Диафрагма поля зрения или полевая диафрагма – это кадровое окно перед пленкой ( или сейчас это сам светоприемник- матрица).

Виньетирующая диафрагма - При прохождении широких наклонных пучков на край изображения, часть этих пучков срезается этой диафрагмой. ( как я поняла это может быть компендиум, бленды, оправы линз и тому подобное, нужно спросить на консультации)

 

 

№25. Афокальные системы Кеплера и Галалея.

АФОКАЛЬНАЯ СИСТЕМА (от греч. a — отрицательная частица и фокус), оптическая система, фокусное расстояние которой бесконечно велико. Афокальные системы применяют для устранения аберрацией оптических систем.

Зрительная труба представляет собой оптический прибор, предназначенный для рассматривания глазом весьма удаленных предметов. Она состоит из объектива и окуляра; они схематически представлены тонкими линзами, хотя это тоже системы линз. В зрительных трубах объектив и окуляр располагаются так, что задний фокус объектива совпадает с передним фокусом окуляра.


Расположение объектива и окуляра в зрительной трубе: задний фокус объектива F1 совпадает с передним фокусом окуляра F2

Объектив дает действительное уменьшенное обратное изображение бесконечно удаленного предмета в своей задней фокальной плоскости; это изображение рассматривается в окуляр, как в лупу. Если передний фокус окуляра совпадает с задним фокусом объектива, то при рассматривании удаленного предмета из окуляра выходят пучки параллельных лучей, что удобно для наблюдения нормальным глазом в спокойном состоянии. Но если зрение наблюдателя несколько отличается от нормального, то окуляр передвигают, устанавливая его «по глазам». Путем передвижения окуляра производится также «наводка» зрительной трубы при рассматривании предметов, расположенных на различных не очень больших расстояниях от наблюдателя.
Объектив зрительной трубы должен быть всегда собирающей системой, окуляр же может быть как собирающей, так и рассеивающей системой. Зрительная труба с собирающим (положительным) окуляром называется трубой Кеплера ( а), труба с рассеивающим (отрицательным) окуляром — трубой Галилея (б). Объектив 1 зрительной трубы дает действительное обратное изображение удаленного предмета в своей фокальной плоскости F E. Расходящийся пучок лучей из точки E падает на окуляр 2; так как эти лучи идут из точки E в фокальной плоскости окуляра, то из него выходит пучок, параллельный побочной оптической оси EO (O – центр линзы) окуляра под углом ω' к главной оси.

Попадая в глаз, лучи эти сходятся на его сетчатке и дают действительное изображение источника.
(В случае галилеевой трубы (б) глаз не изображен, чтобы не загромождать рисунка.) Угол ω — угол, который составляют с осью лучи, падающие на объектив.
Труба Галилея, нередко применяемая в обычном театральном бинокле, дает прямое изображение предмета, труба Кеплера — перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдений, то ее снабжают оборачивающей системой (дополнительной линзой или системой призм), в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль. Преимуществом трубы Кеплера является то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т. п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

 

 

31. Нормальные, широкоугольные и длиннофокусные объективы.

Что нам на этот счет пишет Ландсберг –

Широкоугольные, у которых углы поля зрения(2w) превышают 60 градусов

Длиннофокусные, у которых фокусные расстояния превышают приблизительно трехкратную величину линейных полей изображения. (f больше 3D’)

Нормальные (универсальные), у которых все три характеристики не достигают указанных значений. (три характеристики – это – относительное отверстие е – 2.8(не больше, то есть не 1,8); угол поля зрения не превышает 60 градусов; и фокусное расстояние не больше трехратной величины линейных полей изображения)

Осталось выяснить, что такое линейное поле изображения…

Поле изображения объектива - полный круг, занятый изображением в фокальной плоскости объектива.

Поле изображения может измеряться как в угловой мере (в градусах) - угловое поле, так и в линейной мере - линейное поле, которое может быть задано диаметром поля, или шириной и высотой формата, или его диагональю.

(думаю это может пересекаться с вопросом №27, поэтому см. вопрос 27.)

 

Дополнение:

2w – угол поля зрения – удвоенный угол между оптической осью и лучом идущим с края предмета в центр входного зрачка.

(также см. вопросы 15, 27, 6 и 3(может быть и не смотри))

 

 

32. Геометрическое эффективное отверстие. ( мне кажется, что вопрос не корректен, потому что вроде бы есть отдельно геометрическое относительное отверстие и отдельно эффективное относительное отверстие, но вообще не ясно)

( также см. вопрос 28 про относительное отверстие)

 

Мы знаем, что относительное отверстие объектива – это отношение диаметра входного зрачка к фокусу объектива. Относительное отверстие – это энергетическая характеристика объектива. (это было из лекций, далее из интернета, то есть, не обязательно верно)

 

Различают два понятия относительного отверстия - геометрическое и эффективное.

Величина геометрического относительного отверстия определяется отношением максимального диаметра действующего отверстия объектива к его фокусному расстоянию,

Так как при определении геометрического относительного отверстия не учитываются потери света в линзах объектива, происходящие за счет поглощения в толще стекла и отражения от поверхностей, граничащих с воздухом, то фактическая светосила или эффективное относительное отверстие всегда меньше геометрического на величину, равную сумме всех видов потерь света в объективе. В объективах сложной конструкции, имеющих большое количество линз, потери могут достигать значительной величины, составляющей иногда 30-40%, и ими нельзя пренебрегать при определении экспозиции. Учитывая это обстоятельство, в настоящее время на всех киносъемочных объективах обозначения величин относительных отверстий на шкалах диафрагм наносятся в значениях эффективных относительных отверстий, и только на фронтальном кольце оправы указывается величина полного геометрического отверстия. На шкалах диафрагм объективов некоторых иностранных фирм указываются и геометрические и эффективные значения. В этом случае цифры, соответствующие эффективным отверстиям, наносятся красной краской, а геометрическим - белой.

 

 

33. Материалы используемые при изготовлении светофильтров.


Светофильтры, по большому счету, могут быть изготовлены из любого оптически прозрачного материала, а специфические свойства фильтрам могут быть приданы либо окраской (поверхностной или в массе), либо нанесением специальных дифракционных покрытий, либо - специальной формой поверхности. На практике же изготовление светофильтров, применяемых для фотосъёмки, оказывается не таким простым делом, ведь такие светофильтры помещаются перед объективом, а значит - составляют с ним общую оптическую систему. Поэтому требования к светофильтрам приходится предъявлять столь же строгие, как и к фотографическим объективам.

Для изготовления светофильтров в основном применяются те же материалы, что и для изготовления объективов - высококачественное оптическое стекло или специальные оптические пластмассы. Часть светофильтров специального назначения (выпускаемых в небольших количествах) изготавливается на основе желатиновых плёнок.

Дорожащие своей репутацией производители, выпускающие большую гамму светофильтров разного назначения, применяют при изготовлении того или иного типа светофильтра ту технологию и те материалы, которые обеспечивают наилучшее параметры светофильтра. Стекло, например, чаще всего применяется для изготовления светофильтров в тех случаях, когда требуется высокая механическая прочность поверхности светофильтра, и в случаях, когда поверхности фильтра предполагается покрывать просветляющими покрытиями. Цвет стеклянным светофильтрам обычно придают введением при варке стекла в его состав специальных веществ-красителей (так называемая "окраска в массе"). Такая окраска является наиболее стойкой к внешним воздействиям, ведь спектральные свойства фильтра не меняются даже при значительном загрязнении или повреждении его поверхности. Другие методы получения окрашенных стеклянных светофильтров - поверхностные поглощающие или интерференционные плёночные покрытия - менее стойки к внешним воздействиям.

Оптические сорта пластмасс незаменимы при производстве светофильтров, имеющих градиентную окраску, а также - для изготовления разного рода оптических насадок, имеющих поверхность сложной формы. Окрашивание пластмассовых светофильтров производят окунанием их в раствор специального красителя, проникающего внутрь материала фильтра, и закрепляющегося там на молекулярном уровне.

Желатиновые светофильтры получают путем растворения в желатине специальных красителей, и нанесения получившегося раствора на полированное стекло. После высыхания получившуюся плёнку (фолию) снимают со стекла и разрезают на части необходимого размера. Несмотря на то, что оптическое качество желатиновых светофильтров получается очень высоким, такие фильтры применяют нечасто - желатиновая фолия достаточно нежна, боится сырости, высоких температур, отпечатков пальцев и других неблагоприятных воздействий. При изготовлении фильтров специального назначения окрашеный слой желатины может быть помещен между двумя оптически плоскими стеклами, защищающими его от повреждений и вредных воздействий.

 

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.