Здавалка
Главная | Обратная связь

Техника спортивного плавания




 


Рис. 2.8

Срыв «вихрей» с задней кромки движущегося крыла

Рис. 2.9

Начальный «вихрь», образование «антивихря» и присоединенного «вихря»

Рис. 2.10

Перемещение потока из-под крыла на его верхнюю поверхность

Рис. 2.11

Характер "стекания" потока с краев крыла


камнем. Циркуляция в виде сопро­вождающего тело и присоединенно­го к нему вихря способствует созда­нию обеспечивающей продвижение подъемной силы. При плавании при­соединенный вихрь проявляется в виде вихревого течения вокруг кис­тей и ступней (Colwin, 1984 а).

Необходимая циркуляция пото­ка в основном создается изменени­ем направления движения кисти, имеющей форму крыла, в сочета­нии со значительным вращением ее и предплечья.

Чтобы понять, что происходит в начале движения «крыла» в непо­движной жидкой среде, возьмите кусок наклоненного и находящего­ся в дыму картона, переместите его и увидите завихрения у его задней кромки (рис. 2.8). Это начальное за­вихрение, которое всегда возникает в начале движения крыла, а также тогда, когда кисть или ступня плов­ца начинает движение в определен­ном направлении.

Один из законов гидроаэроди­намики гласит, что завихрение вы­зывает равной силы антизавихре­ние, циркулирующее в противопо­ложном направлении (закон сохра­нения количества движений). В случае «с крылом» антизавихрени­ем является отвечающий за цирку­ляцию и образование подъемной силы присоединенный вихрь, кото­рый продолжением своего сущес­твования «обязан» сдвигающим си­лам над поверхностями «крыла» (рис. 2.9). Эксперименты с вращаю­щимся в потоке воды цилиндром показали, что завихрение, подобное начальному, возникает повторно когда течение и циркуляция прек­ращаются. В технике такое завих­рение называется конечным.


Математически доказано, что если поток не имеет циркуляции в момент начала движения, то он не может ее иметь и по окончании. Конечное завихрение в конце каж­дого движущего импульса во время гребка указывает на прекращение движущего усилия в данном кон­кретном направлении.

Таким образом, любой из про­изводящих подъемную силу меха­низмов сопряжен с тремя видами завихрений: начальным, присоеди­ненным вихрем и конечным.

Помимо подъемной силы, раз­ница давления у нижней и верхней поверхности «крыла» образует так­же сбегающий вихрь. Иными сло­вами, сбегающий вихрь возникает в силу свойства жидкости переме­щаться из участков высокого давле­ния в участки низкого. Ввиду отсут­ствия каких-либо «преград» на кон­це крыла, разделяющего участки высокого и низкого давления, жид­кость перемещается из-под крыла на его верхнюю часть (рис. 2.10), что смещает движение жидкости на верхней поверхности крыла слегка вовнутрь, а на нижней — наружу, тем самым знакомя нас с третьим измерением потока вокруг «крыла» (рис. 2.11). Встречающиеся на зад­них кромках крыльев потоки, пере­секаясь, образуют ряд небольших сбегающих вихрей, которые объе­диняются в один большой. Энергия, используемая для образования та­кой вихревой дорожки, представля­ет собой индуктивное сопротивле­ние. Вполне очевидно, что для уве­личения скорости необходимо при­ложить дополнительные усилия для преодоления индуктивного сопро­тивления (рис. 2.12), и продвигаю­щийся преимущественно за счет



Рис. 2.12

Образование вихревой

дорожки вследствие

встречи потоков низкого (1)

и высокого (2) давления









©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.