Здавалка
Главная | Обратная связь

Закон сохранения электрического заряда



Электричество

И электромагнетизм

Глава 11

Электростатика

Закон сохранения электрического заряда

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легкие предметы, наэлектризованными. Сейчас мы говорим, что тела при этом приобретают электрические заряды. Не­смотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, по­тертом о мех (их назвали отрицательны­ми); одноименные заряды друг от друга отталкиваются, разноименные — притяги­ваются.

Опытным путем (1910—1914) амери­канский физик Р. Милликен (1868 — 1953) показал, что электрический заряд дискре­тен,т. е. заряд любого тела составляет целое кратное от элементарного электриче­ского зарядае(e=1,6•10-19 Кл). Элек­троне = 9,11•10-31 кг) и протонр=1,67•10-27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.

Все тела в природе способны электри­зоваться, т. е. приобретать электрический заряд. Электризация тел может осуще­ствляться различными способами: сопри­косновением (трением), электростатической индукцией (см. §92) и т.д. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положи­тельного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменя­ется: эти заряды только перераспределя­ются между телами.

Из обобщения опытных данных был установлен фундаментальный закон при­роды, экспериментально подтвержденный в 1843 г. английским физиком М. Фараде­ем (1791 —1867),— закон сохранения за­ряда:алгебраическая сумма электриче­ских зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Электрический заряд — величина ре­лятивистски инвариантная, т. е. не за­висит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

В зависимости от концентрации сво­бодных зарядов тела делятся на проводни­ки, диэлектрики и полупроводники. Про­водники— тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две груп­пы: 1) проводники первого рода(метал­лы) — перенесение в них зарядов (свобод­ных электронов) не сопровождается хими­ческими превращениями; 2) проводники

второго рода(например, расплавленные соли, растворы кислот) — перенесение в них зарядов (положительных и отрица­тельных ионов) ведет к химическим изме­нениям. Диэлектрики(например, стекло, пластмассы) — тела, в которых практиче­ски отсутствуют свободные заряды. Полу­проводники(например, германий, крем­ний) занимают промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обуслов­ливает огромные качественные различия в их поведении и оправдывает поэтому деление тел на проводники, диэлектрики и полупроводники.

Единица электрического заряда (про­изводная единица, так как определяется через единицу силы тока) — кулон(Кл) — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с.

Закон Кулона

Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутиль­ных весов, подобных тем, которые (см. §22) использовались Г.Кавендишем для определения гравитационной постоян­ной (ранее этот закон был открыт Г. Ка­вендишем, однако его работа оставалась неизвестной более 100 лет). Точечнымна­зывается заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до дру­гих заряженных тел, с которыми он взаи­модействует. Понятие точечного заряда, как и материальной точки, является физи­ческой абстракцией.

Закон Кулона:сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, про­порциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k — коэффициент пропорционально­сти, зависящий от выбора системы единиц.

Сила F направлена по прямой, соеди­няющей взаимодействующие заряды, т. е. является центральной, и соответству­ет притяжению (F<0) в случае разно­именных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой.

В векторной форме закон Кулона име­ет вид

где F12— сила, действующая на заряд Q1 со стороны заряда Q2, r12радиус-век­тор, соединяющий заряд Q2 с зарядом Q1, r= |r12|(рис. 117). На заряд Q2 со сторо­ны заряда Q1 действует сила F21=-F12, т. е. взаимодействие электрических точеч­ных зарядов удовлетворяет третьему за­кону Ньютона.

В СИ коэффициент пропорционально­сти равен

k=1/(4pe0).

Тогда закон Кулона запишется в оконча­тельном виде:

Величина e0 называется электрической постоянной;она относится к числу фунда­ментальных физических постоянных и равна

e0=8,85•10-12Кл2/(Н•м2),

или

e0=8,85•10-12Ф/м, (78.3)

где фарад(Ф) — единица электрической емкости (см. §93). Тогда

1/(4pe0) = 9•109м/Ф.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.