Здавалка
Главная | Обратная связь

Решение проблемы producer-consumer с помощью семафоров



Одной из типовых задач, требующих организации взаимодействия процессов, является задача producer-consumer(производитель-потребитель). Пусть два процесса обмениваются информацией через буфер ограниченного размера. Производитель закладывает информацию в буфер, а потребитель извлекает ее оттуда. На этом уровне деятельность потребителя и производителя можно описать следующим образом.

Producer: while(1) { produce_item; put_item; } Consumer: while(1) { get_item; consume_item; }

Если буфер заполнен, то производитель должен ждать, пока в нем появится место, чтобы положить туда новую порцию информации. Если буфер пуст, то потребитель должен дожидаться нового сообщения. Как можно реализовать эти условия с помощью семафоров? Возьмем три семафора: empty, full и mutex. Семафор full будем использовать для гарантии того, что потребитель будет ждать, пока в буфере появится информация. Семафор empty будем использовать для организации ожидания производителя при заполненном буфере, а семафор mutex – для организации взаимоисключения на критических участках, которыми являются действия put_item и get_item (операции "положить информацию" и "взять информацию" не могут пересекаться, так как в этом случае возникнет опасность искажения информации). Тогда решение задачи на C-подобном языке выглядит так:

Semaphore mutex = 1; Semaphore empty = N; /* где N – емкость буфера*/ Semaphore full = 0; Producer: while(1) { produce_item; P(empty); P(mutex); put_item; V(mutex); V(full); } Consumer: while(1) { P(full); P(mutex); get_item; V(mutex); V(empty); consume_item; }

Легко убедиться, что это действительно корректное решение поставленной задачи. Попутно заметим, что семафорыиспользовались здесь для достижения двух целей: организации взаимоисключения на критическом участке и взаимосинхронизациискорости работы процессов.

Мониторы

Хотя решение задачи producer-consumer с помощью семафоров выглядит достаточно изящно, программирование с их использованием требует повышенной осторожности и внимания, чем отчасти напоминает программирование на языке Ассемблера. Допустим, что в рассмотренном примере мы случайно поменяли местами операции P, сначала выполнив операцию для семафора mutex, а уже затем для семафоров full и empty. Допустим теперь, что потребитель, войдя в свой критический участок ( mutex сброшен), обнаруживает, что буфер пуст. Он блокируется и начинает ждать появления сообщений. Но производитель не может войти в критический участок для передачи информации, так как тот заблокирован потребителем. Получаем тупиковую ситуацию.

В сложных программах произвести анализ правильности использования семафоров с карандашом в руках становится очень непросто. В то же время обычные способы отладки программ зачастую не дают результата, поскольку возникновение ошибок зависит от interleaving атомарных операций, и ошибки могут быть трудновоспроизводимы. Для того чтобы облегчить работу программистов, в 1974 году Хором (Hoare) был предложен механизм еще более высокого уровня, чем семафоры, получивший название мониторов. Мы с вами рассмотрим конструкцию, несколько отличающуюся от оригинальной.

Мониторы представляют собой тип данных, который может быть с успехом внедрен в объектно-ориентированные языки программирования. Монитор обладает собственными переменными, определяющими его состояние. Значения этих переменных извне могут быть изменены только с помощью вызова функций-методов, принадлежащих монитору. В свою очередь, эти функции-методы могут использовать в работе только данные, находящиеся внутри монитора, и свои параметры. На абстрактном уровне можно описать структуру монитора следующим образом:

monitor monitor_name { описание внутренних переменных ; void m1(...){... } void m2(...){... } ... void mn(...){... } { блок инициализации внутренних переменных; }}

Здесь функции m1,..., mn представляют собой функции-методы монитора, а блок инициализации внутренних переменных содержит операции, которые выполняются один и только один раз: при создании монитора или при самом первом вызове какой-либо функции-метода до ее исполнения.

Важной особенностью мониторов является то, что в любой момент времени только один процесс может быть активен, т. е. находиться в состоянии готовность или исполнение, внутри данного монитора. Поскольку мониторы представляют собой особые конструкции языка программирования, компилятор может отличить вызов функции, принадлежащей монитору, от вызовов других функций и обработать его специальным образом, добавив к нему пролог и эпилог, реализующий взаимоисключение. Так как обязанность конструирования механизма взаимоисключений возложена на компилятор, а не на программиста, работа программиста при использовании мониторов существенно упрощается, а вероятность возникновения ошибок становится меньше.

Однако одних только взаимоисключений недостаточно для того, чтобы в полном объеме реализовать решение задач, возникающих при взаимодействии процессов. Нам нужны еще и средства организации очередности процессов, подобно семафорам full иempty в предыдущем примере. Для этого в мониторах было введено понятие условных переменных (condition variables)1, над которыми можно совершать две операции wait и signal, отчасти похожие на операции P и V над семафорами.

Если функция монитора не может выполняться дальше, пока не наступит некоторое событие, она выполняет операцию wait над какой-либо условной переменной. При этом процесс, выполнивший операцию wait, блокируется, становится неактивным, и другой процесс получает возможность войти в монитор.

Когда ожидаемое событие происходит, другой процесс внутри функции-метода совершает операцию signal над той же самойусловной переменной. Это приводит к пробуждению ранее заблокированного процесса, и он становится активным. Если несколько процессов дожидались операции signal для этой переменной, то активным становится только один из них. Что можно предпринять для того, чтобы у нас не оказалось двух процессов, разбудившего и пробужденного, одновременно активных внутри монитора? Хор предложил, чтобы пробужденный процесс подавлял исполнение разбудившего процесса, пока он сам не покинет монитор. Несколько позже Хансен (Hansen) предложил другой механизм: разбудивший процесс покидает мониторнемедленно после исполнения операции signal. Мы будем придерживаться подхода Хансена.

Необходимо отметить, что условные переменные, в отличие от семафоров Дейкстры, не умеют запоминать предысторию. Это означает, что операция signal всегда должна выполняться после операции wait. Если операция signal выполняется над условной переменной, с которой не связано ни одного заблокированного процесса, то информация о произошедшем событии будет утеряна. Следовательно, выполнение операции waitвсегда будет приводить к блокированию процесса.

Давайте применим концепцию мониторов к решению задачи производитель-потребитель.

monitor ProducerConsumer { condition full, empty; int count; void put() { if(count == N) full.wait; put_item; count += 1; if(count == 1) empty.signal; } void get() { if (count == 0) empty.wait; get_item(); count -= 1; if(count == N-1) full.signal; } { count = 0; } } Producer: while(1) { produce_item; ProducerConsumer.put(); } Consumer: while(1) { ProducerConsumer.get(); consume_item; }

Легко убедиться, что приведенный пример действительно решает поставленную задачу.

Реализация мониторов требует разработки специальных языков программирования и компиляторов для них. Мониторывстречаются в таких языках, как параллельный Евклид, параллельный Паскаль, Java и т. д. Эмуляция мониторов с помощью системных вызовов для обычных широко используемых языков программирования не так проста, как эмуляция семафоров. Поэтому можно пользоваться еще одним механизмом со скрытыми взаимоисключениями, механизмом, о котором мы уже упоминали, – передачей сообщений.

Сообщения

Для прямой и непрямой адресации достаточно двух примитивов, чтобы описать передачу сообщений по линии связи – send иreceive. В случае прямой адресации мы будем обозначать их так:

send(P, message) – послать сообщение message процессу P ;
receive(Q, message) – получить сообщение message от процесса Q.

В случае непрямой адресации мы будем обозначать их так:

send(A, message) – послать сообщение message в почтовый ящик A ;
receive(A, message) – получить сообщение message из почтового ящика A.

Примитивы send и receive уже имеют скрытый от наших глаз механизм взаимоисключения. Более того, в большинстве систем они уже имеют и скрытый механизм блокировки при чтении из пустого буфера и при записи в полностью заполненный буфер. Реализация решения задачи producer-consumer для таких примитивов становится неприлично тривиальной. Надо отметить, что, несмотря на простоту использования, передача сообщений в пределах одного компьютера происходит существенно медленнее, чем работа с семафорами и мониторами.

Тупики

В предыдущих лекциях мы рассматривали способы синхронизации процессов, которые позволяют процессам успешно кооперироваться. Однако в некоторых случаях могут возникнуть непредвиденные затруднения. Предположим, что несколько процессов конкурируют за обладание конечным числом ресурсов. Если запрашиваемый процессом ресурс недоступен, ОС переводит данный процесс в состояние ожидания. В случае когда требуемый ресурс удерживается другим ожидающим процессом, первый процесс не сможет сменить свое состояние. Такая ситуация называется тупиком (deadlock) . Говорят, что в мультипрограммной системе процесс находится в состоянии тупика, если он ожидает события, которое никогда не произойдет.Системная тупиковая ситуация, или "зависание системы", является следствием того, что один или более процессов находятся в состоянии тупика. Иногда подобные ситуации называют взаимоблокировками . В общем случае проблема тупиков эффективного решения не имеет.

Рассмотрим пример. Предположим, что два процесса осуществляют вывод с ленты на принтер. Один из них успел монополизировать ленту и претендует на принтер, а другой наоборот. После этого оба процесса оказываются заблокированными в ожидании второго ресурса (см. рис. 7.1).


Рис. 7.1.Пример тупиковой ситуации

Определение. Множество процессов находится в тупиковой ситуации, если каждый процесс из множества ожидает события, которое может вызвать только другой процесс данного множества. Так как все процессы чего-то ожидают, то ни один из них не сможет инициировать событие, которое разбудило бы другого члена множества и, следовательно, все процессы будут спать вместе.

Выше приведен пример взаимоблокировки, возникающей при работе с так называемыми выделенными устройствами. Тупики, однако, могут иметь место и в других ситуациях. Hапример, в системах управления базами данных записи могут быть локализованы процессами, чтобы избежать состояния гонок (см. лекцию 5 "Алгоритмы синхронизации"). В этом случае может получиться так, что один из процессов заблокировал записи, необходимые другому процессу, и наоборот. Таким образом, тупики могут иметьместо как на аппаратных, так и на программных ресурсах.

Тупики также могут быть вызваны ошибками программирования. Например, процесс может напрасно ждать открытия семафора, потому что в некорректно написанном приложении эту операцию забыли предусмотреть. Другой причиной бесконечного ожидания может быть дискриминационная политика по отношению к некоторым процессам. Однако чаще всего событие, которого ждет процесс в тупиковой ситуации, – освобождение ресурса, поэтому в дальнейшем будут рассмотрены методы борьбы ступиками ресурсного типа.

Ресурсами могут быть как устройства, так и данные. Hекоторые ресурсы допускают разделение между процессами, то есть являются разделяемыми ресурсами. Например, память, процессор, диски коллективно используются процессами. Другие не допускают разделения, то есть являются выделенными, например лентопротяжное устройство. К взаимоблокировке может привести использование как выделенных, так и разделяемых ресурсов. Например, чтение с разделяемого диска может одновременно осуществляться несколькими процессами, тогда как запись предполагает исключительный доступ к данным на диске. Можно считать, что часть диска, куда происходит запись, выделена конкретному процессу. Поэтому в дальнейшем мы будем исходить из предположения, что тупики связаны с выделенными ресурсами , то есть тупики возникают, когда процессу предоставляется эксклюзивный доступ к устройствам, файлам и другим ресурсам.

Традиционная последовательность событий при работе с ресурсом состоит из запроса, использования и освобождения ресурса. Тип запроса зависит от природы ресурса и от ОС. Запрос может быть явным, например специальный вызов request, или неявным –open для открытия файла. Обычно, если ресурс занят и запрос отклонен, запрашивающий процесс переходит в состояние ожидания.

Далее в данной лекции будут рассматриваться вопросы обнаружения, предотвращения, обхода тупиков и восстановления послетупиков. Как правило, борьба с тупиками – очень дорогостоящее мероприятие. Тем не менее для ряда систем, например для систем реального времени, иного выхода нет.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.