Здавалка
Главная | Обратная связь

Оже-электронная спектроскопия

Средняя глубина анализируемого слоя: 1-3 нм

Пространственное разрешение 50 нм

Анализируемый объем 10-5 мкм3

Чувствительность 10-2 % , число атомов 103, масса 10-19г.

Является самой распространенной методикой. Эффект, на котором основана ОЭС, был открыт в 1925 году французским физиком Пьером Оже.

Оже-процесс можно разделить на две стадии. Первая – ионизация атомов внешним излучением (рентгеновским, быстрыми электронами, ионами) с образованием вакансии на одной из внутренних оболочек. Такое состояние атома неустойчиво, и на второй стадии происходит заполнение вакансии электроном одной из вышележащих уровней энергии атома. Выделяющаяся при этом энергия может быть испущена в виде кванта характеристического рентгеновского излучения, но может быть передана третьему атомному электрону, который в результате вылетает из атома, т. е. наблюдается оже-эффект.Материал из m-protect.Перейти к: навигация, поиск

Главным преимуществом ОЭС по сравнению с многими другими методами является очень малая глубина анализа, что делает эту методику пригодной для исследования поверхности. Глубина анализа определяется длиной свободного пробега электронов в твердом теле в смысле неупругих взаимодействий. Если зародившийся в твердом теле оже-электрон при движении к поверхности испытает хоть одно неупругое взаимодействие (например, совершит ионизацию атома), то он потеряет часть энергии и не будет зарегистрирован в интересующем нас месте энергетического спектра вторичных электронов, который формируется при бомбардировке твердого тела ускоренными электронами. То есть оже-электроны, рожденные на глубине большей, чем длина свободного пробега, не будут нести информацию о нахождении атомов данного сорта. Длина свободного пробега в сильной степени зависит от скорости движения, а следовательно, и от энергии электронов.

Вероятность оже-эффекта падает с ростом атомного номера элемента, поэтому эффективность анализа атомов лёгких элементов выше, чем тяжёлых.

Оже-процессы проявляются при бомбардировке поверхности твердого тела медленными электронами с энергией E от 10 до 10000 эВ. Бомбардировка твердых тел в вакууме сопровождается вторичной электронной эмиссией. В состав вторичных электронов, эмитируемых, кроме собственно вторичных электронов, входят упруго- и непругорассеянные первичные электроны.

По оже-спектрам можно определить элементный состав приповерхностных слоев твёрдых тел, получать информацию о межатомных взаимодействиях, осуществлять хим. анализ газов. Расположение пика в энергетическом спектре оже-электронов несёт информацию о хим. природе атомов, его амплитуда - об их концентрации. Взаимодействия атома с его окружением проявляются в форме оже-пиков и их энергетических сдвигах. В О-с. атомы возбуждают электронным, фотонным (рентгеновским) и ионным пучками, соответственно различают электронную (ЭОС), рентгеновскую (РОС) и ионную (ИОС) О-с.

Регистрация оже-спектров производится с помощью оже-спектрометров, близких по конструкции в случае ЭОС, РОС и ИОС (рис. 1). Исследуемый образец помещают в вакуумную (до 10-11 мм рт. ст.) камеру и облучают пучками первичных частиц, источниками которых служат электронная пушка, рентгеновская трубка и ионная пушка; они должны обеспечивать потоки частиц, интенсивность которых достаточна для эмиссии оже-электронов в кол-ве, надёжно регистрируемом измерит. аппаратурой. Электронные и ионные пучки легко фокусируются, их можно развернуть в растр по поверхности образца (сканирующие оже-спектрометры), что позволяет изучать распределение на поверхности образца атомов различных хим. элементов с высоким пространственным разрешением (~30 нм). Рентгеновский зонд имеет минимальный диаметр ~ 150 мкм, сканирующая РОС пока не используется.

Рис. 1. Блок-схема оже-спектрометра: 1 - источник первичных частиц (электронов, фотонов, ионов); 2 - исследуемый образец; 3 - ионная пушка для послойного распыления образца; 4 - энергетический анализатор электронов; 5 - система регистрации и обработки данных. Пунктиром обведена вакуумируемая часть прибора.
Основной узел оже-спектрометра - энергоанализатор оже-электронов.

Он обеспечивает чувствительность на два порядка выше по сравнению с многосеточным анализатором с тормозящим полем, однако последний позволяет сочетать методы О--с. с дифракцией медленных электронов, что даёт возможность наряду с элементным составом приповерхностных слоев моно-кристаллпч. образцов получать сведения об их кристаллич. структуре. Обычно регистрируют не эпергетич. распределение числа N эмитированных электронов по энергиям , а производную ( - энергия электронов), что позволяет не только более чётко выделить линии в оже-спектрах (повысив чувствительность метода), но и более детально анализировать их структуру.

Традиционные области применения ОЭС – изучение процессов адсорбции и десорбции на поверхностях твердых тел, коррозии, явлений, происходящих при поверхностном гетерогенном катализе, контроль за чистотой поверхности в различных технологических процессах.

 

 

 





©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.