Здавалка
Главная | Обратная связь

ГЛАВА 335. ОБМЕН КАЛЬЦИЯ, ФОСФОРА И КОСТНАЯ ТКАНЬ: КАЛЬЦИЙРЕГУЛИРУЮЩИЕ ГОРМОНЫ



 

Майкл Ф. Холик, Стефеп М. Крепи, Джои Т. Поттс, младший (Michael F. Holick, Stephen M. Krone, John T. Potts, Jr.)

 

 

Структура и метаболизм костной ткани (см. гл. 337)

 

Кость — это динамическая ткань, постоянно перестраивающаяся на протяжении жиз­ни человека. Кости скелета хорошо васкуляризованы и получают примерно 10% минутно­го объема крови. Строение плотной и губчатой костей создает оптимальное для движений сочетание силы и прочности. Кроме того, кость обеспечивает организм кальцием, магни­ем, фосфором, натрием и другими ионами, необходимыми для поддержания гомеостати­ческих функций организма.

Свойства кости определяются ее внеклеточным веществом. Кость включает твердый минеральный компонент, тесно связанный с органическим матриксом, который на 90— 95% состоит из коллагена I типа (см. гл. 319). Неколлагеновая часть органического мат­рикса представлена белками сывороточного происхождения (альбумин и a2-НS-гликопротеиды), белком, содержащим a-карбоксиглутаминовую кислоту (который называют костным ГЛА -белком, или остеокальцином), гликопротеидом, называемым остеонектином, а также костным протеигликаном и другими гликопротеидами, фосфопротеидами и сиалопротеидами. Функция некоторых из этих белков может заклю­чаться в инициации минерализации и связывании минеральной фазы с матриксом. Мине­ральная фаза костной ткани представлена кальцием и фосфатом [эмпирическая формула Са10(РО4)6(ОН)2]. Кроме того, в кости присутствуют и другие ионы, преимущественно в поверхностных слоях. Минеральная фаза тесно контактирует с коллагеновыми волокнами и локализуется главным образом в специфических участках внутри «ячеек», образуемых этими волокнами. Такая структурная организация минеральной фазы и матрикса форми­рует двухфазное вещество, точно соответствующее задаче противостояния механическим нагрузкам. Образование и локализация неорганической фазы, по-видимому, частично определяются органическим матриксом.

Кость формируют клетки мезенхимального происхождения, которые синтезируют н секретируют органический матрикс. Минерализация матрикса, особенно в остеонах (гаверсовы системы), начинается вскоре после его секреции клетками (первичная минера­лизация), а заканчивается лишь через несколько недель (вторичная минерализация). Пос­кольку подвергаемый минерализации матрикс секретируется остеобластами, эти клетки окружаются им и превращаются в остеоциты, снабжаемые кровью через ряд канальцев. Резорбцию кости осуществляют в основном остеокласты. Это много­ядерные клетки, образующиеся в результате слияния клеток-предшественников, которые в свою очередь дифференцируются из гемопоэтической стволовой клетки, дающей начало мононуклеарным фагоцитам. Резорбция кости происходит в фестончатых пространствах (лакуны Хаушипа), где остеокласты прикрепляются к костному матриксу через кольцо со­кратительных белков (прозрачная зона) и образуют своеобразную гофрированную каем­ку. Там, где каемка формирует складки и контактирует с костью, последняя теряет как ми­неральный компонент, так н матрикс. В мембране гофрированной каемки присутствует

АТФаза протонового насоса, создающая особую кислую среду в ограниченном внекле­точном пространстве, что приводит к солюбилизации минеральной фазы. Остеобласты участвуют в синтезе и секреции основной массы органического матрикса и регулируют его минерализацию. Щелочная фосфатаза кости локализуется в остеобластах. Активное со­единение, которое в конце концов обеспечивает формирование кости, называется кост­ным морфогенетическим белком. Рост и/или синтез матрикса остеобластами стимулируется дополнительными факторами (ряд ростовых факторов костного происхож­дения, соматомедины, b-трансформирующий фактор роста).

У эмбриона и растущего ребенка кости формируются либо путем реконструкции и за­мещения ранее кальцифицированного хряща (эндохондральное формирование кости), либо без хрящевого матрикса (внутримембранное формирование кости). В новой кости, будь то у эмбриона или ребенка, или в случае заживления переломов у взрослых отношение клеток к матриксу довольно велико. Костная ткань характеризуется присутствием переплетаю­щихся и редко расположенных грубых пучков коллагеновых волокон (гладкая кость). У взрослых образуется более зрелая кость, в которой пучки волокон расположены упоря­дочение параллельными линиями или концентрическими кругами (пластинчатая кость). В длинных костях пластинки уложены концентрически вокруг кровеносных сосудов и об­разуют гаверсовы системы. В длину кость растет в результате пролиферации хрящевых клеток и эндохондральной последовательности в ростовой пластинке. Рост в ширину и утолщение осуществляются вследствие формирования кости на периостальной поверхнос­ти и резорбции поверхности эндоста, причем скорость формирования должна превышать скорость резорбции. У взрослых после закрытия эпифизов рост кости в длину и эндохон­дральное ее формирование прекращаются, если не считать некоторой активности хряще­вых клеток суставных поверхностей. Однако даже у взрослых лиц реконструкция кости (как гаверсовых систем, так и трабекулярной кости) происходит в течение всей жизни, в чем можно убедиться, регистрируя включение радиоизотопов или флюоресценцию тетра­циклинов, фиксирующихся в участках свежей минерализации кости. С помощью количес­твенных гистоморфометрических методов показано, что новообразуемые поверхности глад­кие, характеризуются способностью поглощать тетрациклин и относительно низкой плот­ностью минерального компонента. Формирующиеся поверхности покрыты активными ос­теобластами. Толщина слоя, образующегося из-за относительного отставания минерали­зации нового органического матрикса, в норме не превышает примерно 12 мкм. О скорос­ти формирования кости можно судить по результатам исследования недеминерализованных срезов костных биоптатов от лиц, получавших тетрациклин с некоторым интервалом. На срезах расстояние между флюоресцирующими слоями соответствует новообразован­ной кости. Участки резорбции неровной конфигурации и содержат остеокласты (рис. 335-1). Резорбция предшествует образованию и протекает более интенсивно, но короче по време­ни, чем образование кости. У взрослых лиц в процесс активной резорбции вовлекается примерно 4% поверхности трабекулярной кости (такой как гребень подвздошной кости), а остеоид покрывает 10—15% поверхности этой кости. Кинетические исследования с по­мощью радиоактивного кальция (47Са) показали, что в скелете ежегодно обменивается до 18% общего содержания кальция. Таким образом, кость — это ткань с активным метабо­лизмом, и целостность ее клеток зависит от интактности кровоснабжения. Реконструкция кости каким-то образом связана с постоянными механическими нагрузками на нее. Кость служит также резервуаром минеральных ионов, особенно кальция, необходимых для раз­личных физиологических процессов.

Реакция кости на переломы, инфекции, прекращение кровоснабжения, а также на дру­гие патологические процессы сравнительно ограничена. Мертвая кость резорбируется, а новая формируется, что сопровождается врастанием новых кровеносных сосудов в пора­женную область. При повреждениях, нарушающих целостность ткани, например при пе­реломах с расхождением и смещением концов, остеопрогениторные клетки стромы диффе­ренцируются в клетки с иными функциональными свойствами, чем у остеобластов, и за­живление сопровождается образованием фиброзной ткани и хряща. При правильной фик­сации отломков и малой подвижности в месте перелома заживление происходит преиму­щественно путем формирования новой кости без образования рубцовой ткани. Реконструк­ция этой кости совершается вдоль силовых линий, определяемых механическими нагруз­ками, которые каким-то образом транслируются в биологическую реакцию.

При прогрессирующих процессах, например при опухолях, на поверхности кости, кон­тактирующей с опухолью, возникает резорбция. Изгиб усиливает новообразование кости на вогнутой поверхности с резорбцией на выпуклой, что, очевидно, направлено на форми­рование наиболее прочной механической структуры. Даже при столь разрушительных процессах, как болезнь Педжета, реконструкция кости определяется механическими силами. Таким образом, пластичность кости обусловливается реакцией клеток, взаимодействую­щих друг с другом и с окружающей средой.

 

 

Рис. 335-1. Схематическое изображение реконструирующихся поверхностей трабекуляр­ной кости.

Большая часть костной поверхности у взрослых не подвергается ни новообразованию, ни резорбции. Такие участки обычно гладкие, лишены остеоидного слоя и покрыты либо невидимыми, либо упло­щенными клетками. Поверхности активного новообразования — гладкие и покрыты остеобластами, формирующими остеоидный слой (прозрачный) толщиной не более 12 мкм. Фронт кальцификации про­ходит по местам контакта остеоидного слоя и минерализованной кости (затемнена). Поверхности не­активного костеобразования не покрыты остеобластами и на них присутствует лишь немного упло­щенных клеток. Поверхности активной резорбции — неровные или бахромчатые и покрыты многоя­дерными остеокластами. На поверхностях с неактивной резорбцией последние не видны.

 

 

Механизмы формирования и резорбции кости. Образование кости — это упорядочен­ный процесс, при котором неорганические вещества откладываются в органический мат­рикс. Минеральная фаза состоит из кальция и фосфора, и на скорость ее образования влия­ют концентрации этих ионов в плазме и внеклеточной жидкости. Если концентрация каль­ция и фосфора сходна с таковой в ультрафильтрате плазмы, минерализация и рост крис­таллов гидроксиапатита могут происходить in vitro. Однако концентрация этих ионов в участках минерализации неизвестна, и локальную концентрацию кальция, фосфора и дру­гих ионов каким-то образом регулируют клетки (остеобласты, остеоциты). Коллагены из разных источников катализируют формирование очагов выпадения кальция и фосфора из рас 1 воров этих ионов, и вначале минеральная фаза откладывается в специфических учас­тках ячеек, образованных особо упакованными молекулами коллагена. Организация кол­лагена, вероятно, влияет на количество и характер минеральной фазы кости. Существует по одному гену для каждой из двух a1-цепей и одной a2-цепи, из которых построен колла­ген I типа. Первичная структура коллагена I типа в коже и костной ткани сходна. Однако имеются различия в посттрансляционных модификациях коллагена I типа, таких как гид­роксилирование, гликозилирование, а также в характере, числе и распределении межмоле­кулярных поперечных связей. Кроме того, нормально минерализованный коллаген кости и дентина обладает более крупными ячейками, чем неминерализованные коллагены, на­пример, в сухожилиях. Неколлагеновые органические компоненты, такие как костной ГЛА-белок или остеонектин, также могут принимать участие в формировании минеральной фазы кости. Щелочная фосфатаза—это маркер остеобластов, и ее уровень в клетках коррелиру­ет с их потенциалом минерализации. Хотя у лиц со сниженным уровнем щелочной фосфа­тазы (гипофосфатазия) отмечаются нарушения минерализации, функция этого фермента в процессе минерализации остается не совсем понятной. Для объяснения способности колла­гена неминерализованных тканей катализировать образование очагов неорганической фазы из растворов, сходных по составу с нормальной внеклеточной жидкостью, привлека­ют предположение о регуляции минерализации ингибиторами этого процесса. Неоргани­ческий пирофосфат в концентрациях, ниже необходимых для связывания ионов кальция, оказывается мощным ингибитором минерализации. Поскольку щелочная фосфатаза, при­сутствующая в остеобластах и других клетках, при нейтральном рН способна катализиро­вать гидролиз неорганического пирофосфата, этот фермент мог бы регулировать минера­лизацию, меняя концентрации пирофосфата. Кроме того, на скорость и степень минерали­зации могут влиять и макромолекулярные ингибиторы, такие как агрегаты протеоглика­нов. В подвергающемся кальцификации хряще вне клеток присутствуют связанные с мем­браной пузырьки, содержащие минеральные вещества, и предполагается, что это и есть начальная минеральная фаза.

В кости твердая фаза. фосфата кальция в начале минерализации представлена СаНРО4•2Н2О. По мере минерализации твердая фаза превращается в плохо кристаллизо­ванный гидроксиапатит с относительно низким (около 1,2) молярным отношением каль­ций/фосфор. С возрастом и созреванием степень кристаллизации и отношение кальций/ фосфор увеличиваются. Если в минеральную фазу включаются ионы фтора, то доля амор­фного фосфата кальция снижается, а кристаллизация его увеличивается.

Существует предел концентрации ионов кальция и фосфора во внеклеточной жидкос­ти, ниже которого минерализация не возникает. «Произведение растворимости» для мине­рального вещества кости рассчитать трудно, так как состав минеральной фазы непостоя­нен и природа присутствующих в растворе веществ, определяющих это произведение рас­творимости, неизвестна. Тем не менее при чрезмерной концентрации кальция и фосфора во внеклеточной жидкости минеральная фаза может появиться и там, где в норме ее не бывает.

При резорбции кости ионы кальция и фосфора из твердой фазы переходят во внекле­точную жидкость, а потом уже рассасывается органический матрикс. Как протекают эти процессы, не совсем ясно. Выход минеральных веществ из кости можно было бы объяснить снижением рН, наличием хелирующего агента и функционированием механизма клеточ­ного насоса, сдвигающего равновесие между твердой фазой и раствором. Тот факт, что резорбция кости происходит в участках прилегания к ее поверхности остеокластов, где рН внеклеточной жидкости имеет низкую величину, подтверждает предположение о том, что для солюбилизации минералов кости необходима кислая среда. Хотя остеокласты богаты резистентной к тартрату кислой фосфатазой, конкретная функция этого фермента неизвес­тна. Если при увеличении числа или усилении функции остеобластов активность сыворо­точной щелочной фосфатазы повышается, то для кислой фосфатазы подобные сдвиги от­сутствуют. Матрикс резорбируется под действием протеиназ, высвобождаемых остеоклас­тами. Однако пока не будет удалена минеральная фаза, белки костного матрикса не могут быть разрушены. На скорость резорбции кости влияют такие гормоны, как паратиреоид­ный гормон и 1,25(ОН)2 — витамин D, а также местные факторы, например простагланди­ны, гепарин из тучных клеток и различные цитокины, которые либо повышают актив­ность уже имеющихся остеокластов, либо ускоряют их дифференцировку из гематопоэтических предшественников. Некоторые из этих факторов влияют непосредственно на остео­класты, тогда как прочие действуют опосредованно через другие клетки, такие как остео­бласты или фибробласты стромы. Например, рецепторы паратиреоидного гормона при­сутствуют на остеобластах, но не на остеокластах; следовательно, ускорение резорбции кости под действием паратиреоидного гормона опосредуется остеобластами.

Интерлейкин-1 (монокин, повышающий резорбцию кости in vitro) активирует остеок­ласты также опосредованно, действуя через остеобласты или фибробласты стромы. В-и Т-лимфоциты могут продуцировать и другие аналогичные факторы. Ускоряющий резорб­цию эффект таких лигандов, как a-трансформирующий фактор роста, в некоторых костях обусловливается стимуляцией синтеза и высвобождения простагландинов. С дру­гой стороны, главный ингибитор костной резорбции кальцитонин действует прямо на ре­цепторы остеокластов. На какие клетки влияют другие ингибиторы резорбции кости, та­кие как гамма-интерферон, пока неизвестно.

 

Метаболизм кальция

 

В организме взрослого человека содержится в среднем около 1—2 кг кальция, из кото­рых более 98% приходится на кости скелета. Кальций минеральной фазы на поверхности кристаллов находится в равновесии с ионами внеклеточной жидкости, но лишь небольшая часть общего кальция (примерно 0,5%) подвергается обмену. Кальций, находящийся во внеклеточной жидкости, необходим для многих функций организма, и его содержание здесь весьма стабильно. У здорового взрослого человека концентрация кальция в плазме колеб­лется в пределах 88—104 мг/л (2,2—2,6 мМ). В плазме он присутствует в виде свободных ионов, в связанном с белками виде и — немного — в виде способных к диффузии комплек­сов. Концентрация свободных ионов кальция влияет на нейромышечную возбудимость и другие функции клеток и находится под строгим гормональным контролем (главным об­разом, как описано ниже, со стороны паратиреоидного гормона). Важным фактором, оп­ределяющим концентрацию ионов кальция, является концентрация белков в сыворотке; главный белок, связывающий кальций, — альбумин. Одна из формул, дающих приблизи­тельное представление о количестве связанного с белками кальция, имеет следующий вид:

% белковосвязанного Са = 8•альбумин (г/л) + 2•глобулпн (г/л) + 3. Другой способ расчета заключается в вычитании 10 мг/л из сывороточной концентрации кальция для каждых

 

 

Рис. 335-2. Гомеостаз кальция.

Схематическое изображение содержания кальция во внеклеточном жидкости (ВКЖ), костях, а также пище и кале. Величины кальциевых потоков за сутки, рассчитанные различными методами, приведены рядом с путями транспорта в кишечнике, почках и скелете. Указаны приблизительные пределы колеба­ний, иллюстрирующие некоторые положения текста. Эффективность всасывания в кишечнике нахо­дится в обратной зависимости от содержания кальция в диете (хроническая адаптация). Это проявля­ется характерными колебаниями всасывающихся и выводимых с калом количеств. Показано, что при приеме 0,5 г всасывание составляет 50% (0,25 г), но при приеме 1.5 г оно снижается до 30% (0,5 г). Количество эндогенного кальция, секретируемого в просвет кишечника и поступающего в кал, посто­янно и составляет 0,1—0,2 г в сутки. Оно не зависит ни от приема, ни от всасывания кальция. Фильтру­емые, неабсорбируемые и экскретируемые почками количества кальция выбраны произвольно, чтобы подчеркнуть тот факт, что при низких скоростях фильтрации кальция (т. е. при низких скоростях клу­бочковой фильтрации) большая его часть реабсорбируется (например, 5,85 из 6 г) и экскреция с мочой составляет 150 мг; при более высоких скоростях фильтрации (при высоком потреблении кальция с пи­щей) реабсорбируется несколько меньшая его часть (например, 9,7 из 10 г) и экскреция с мочой оказы­вается более высокой — 300 мг. В любых условиях реабсорбция кальция в почках превышает 95% фильтруемой нагрузки. Поэтому, несмотря на то что прирост потребления кальция составляет 1,0 г, экскреция с мочой увеличивается только на 150 мг. В условиях кальциевого равновесия скорости вы­свобождения кальция из костей и поглощения его костной тканью равны.

 

 

10 г/л сывороточного альбумина ниже 40 г/л. Таким образом, концентрация ультрафильт­руемого кальция составляет обычно около половины общей концентрации кальция. В боль­шинстве лабораторий определяют только общий кальций, и для оценки концентрации ионов кальция важно знать концентрацию белков. Содержание свободных ионов можно опреде­лить с помощью специфических для кальция электродов.

Концентрация ионов кальция во внеклеточной жидкости сохраняется постоянной в результате взаимодействия процессов непрерывного поступления и выхода кальция из нее. Кальций поступает в плазму вследствие его всасывания в кишечнике и резорбции кости, а покидает внеклеточную жидкость с секретом желудочно-кишечного тракта, мочой, путем отложения в костной ткани и — в небольшом количестве — с потом. Процессы резорбции и формирования кости тесно связаны; ежесуточно кости скелета поглощают и выделяют примерно 0,5 мг кальция (рис. 335-2).

В США средняя диета обеспечивает прием около 0,6—1 г кальция в сутки, главным образом с молочными продуктами. Однако у взрослого человека всасывается меньше по­ловины поступающего с пищей кальция. У детей в периоды быстрого роста, у женщин при беременности и лактации всасывание кальция увеличивается, а с возрастом снижается. При достаточном поступлении в организм витамина D и нормальном его метаболизме из пищи всасывается большее количество кальция (адаптация). Основная часть кальция всасывает­ся в проксимальных отделах тонкого кишечника, в более дистальных сегментах эффектив­ность всасывания снижается. Всасывание обусловлено как процессом активного транспорта, так и процессом ограниченной диффузии; первый из этих процессов имеет большее значе­ние в верхних, а второй — в нижних отделах кишечника. На оба влияют метаболиты вита­мина D. Не все содержащиеся в пище формы кальция всасываются одинаково; имеет зна­чение даже состав соли, в которой присутствует кальций: в виде хлорида он всасывается, очевидно, более эффективно, чем в виде других солей.

Кальций также секретируется в просвет желудочно-кишечного тракта. При внутри­венном введении радиоактивных изотопов кальция они появляются в кале, что позволяет рассчитать количество эндогенного кальция кала (см. рис. 335-2). Дру­гие методы дают завышенные цифры потерь кальция с содержимым кишечника. Секреция кальция в просвет кишечника постоянна и не зависит от его всасывания. При низком со­держании кальция в пище (менее 500 мг в сутки) для поддержания положительного каль­циевого баланса требуется всасывание более 30—40% его. Только в этом случае поглоще­ние в кишечнике будет достаточным, чтобы компенсировать потери через секрецию желу­дочно-кишечным трактом и экскрецию почками.

У взрослых здоровых людей экскреция кальция с мочой при среднем потреблении его колеблется в пределах 100—400 мг в сутки. Когда поступление кальция с пищей менее 200 мг в сутки, экскреция его с мочой, как правило, составляет менее 200 мг в сутки. Однако у большинства здоровых людей широкие колебания потребления кальция с пищей сравни­тельно слабо влияют на его экскрецию с мочой. Это означает, что у лиц, получающих мало кальция с пищей, относительная неэффективность задержки его почками должна была бы обусловливать отрицательный кальциевый баланс, если бы всасывание кальция не дости­гало максимальной эффективности (см. рис. 335-2).

В моче появляется лишь малая часть того количества кальция, которое фильтруется в клубочках (около 6—10 г в сутки), но не исключено, что какие-то не связанные с белками неионные формы кальция (например, цитрат кальция) выводятся значительно быстрее, чем другие. На экскрецию кальция с мочой влияет и экскреция других электролитов. Напри­мер, содержание кальция в моче обычно пропорционально содержанию в ней натрия, дру­гие ионы, такие как сульфат, также увеличивают экскрецию кальция.

Поддержание положительного баланса кальция (см. рис. 335-2) зависит от интенсив­ности его всасывания в кишечнике. Недостаточность паратиреоидного гормона или вита­мина D, заболевания кишечника или резкий дефицит кальция в пище могут предъявлять к кальциевому гомеостазу такие требования, которые не удастся компенсировать задерж­кой кальция почками, что приведет к отрицательному кальциевому балансу. Предотвра­тить снижение содержания кальция во внеклеточной жидкости даже в условиях хроничес­кого отрицательного кальциевого баланса способна усиленная резорбция костей, но толь­ко ценой прогрессирующей остеопении.

Патофизиология. Снижение концентрации свободных ионов кальция приводит к по­вышению нейромышечной возбудимости и появлению синдрома тетании. При полном проявлении этот синдром характеризуется периферическими и периоральными парестези­ями, спазмом кистей и стоп, возбудимостью, судорогами, бронхоспазмом, ларингоспаз­мом, симптомами Хвостека, Труссо и Эрба и удлинением интервала Q—Т на электрокардиограмме. У детей тетания может проявляться раздражительностью и сонливостью. Уро­вень ионов кальция, определяющий возникновение отдельных признаков тетании, у раз­ных людей неодинаков. На проявление тетании влияет и концентрация других компонен­тов внеклеточной жидкости. Например, гипомагниемия и алкалоз снижают порог тета­нии, тогда как гипокалиемия и ацидоз повышают его.

Увеличение уровня общего кальция в сыворотке крови сопровождается повышением и количества ионов кальция, что может проявляться анорексией, тошнотой, рвотой, запо­рами, гипотонией, депрессией, а иногда сонливостью и комой. Длительная гиперкальцие­мия, особенно при нормальном или повышенном уровне фосфата в сыворотке, может при­водить к отложению твердой фазы кальция и фосфата в необычных для него местах, таких как стенки кровеносных сосудов, соединительная ткань вокруг суставов, слизистая обо­лочка желудка, роговица глаз и паренхима почек. Гиперкальциемия и сама по себе, поми­мо патологических кальцнй-фосфатных отложений в просвете почечных канальцев и ин­терстициальной ткани, способна нарушать функцию почек.

 

Метаболизм фосфора

 

Фосфор — не только важнейший компонент кости; он принадлежит к числу тех эле­ментов, которыми наиболее богаты все ткани. В определенной форме он принимает учас­тие почти во всех метаболических процессах. Общее содержание фосфора в организме здо­рового взрослого человека — около 1 кг, из которого примерно 85% находится в скелете.

В плазме натощак основная часть фосфора присутствует в виде неорганического ортофосфата с концентрацией фосфора 28—40 мг/л. Причем только 12% фосфора плазмы свя­зано с белками. Примерно 75% общего фосфора плазмы в норме представлено свободны­ми НРО42– и NaHPO4 и 10%—свободным Н2РО4. Из-за разнообразия присутствующих в плазме соединений фосфора, что зависит от рН и других факторов, его концентрацию обыч­но выражают в единицах массы или молярности элементарного фосфора. Общий уровень фосфора выше у детей и обнаруживает тенденцию к росту у женщин после менопаузы. Суточные колебания концентрации фосфора наблюдаются даже при 24-часовом голода­нии; отчасти они опосредуются активностью коры надпочечников. Прием углеводов ост­ро снижает содержание фосфора в сыворотке на 10—15 мг/л. По-видимому, это объясняет­ся поглощением фосфора клетками и образованием фосфатных эфиров. Прием фосфора повышает его уровень в плазме. Поэтому для правильной оценки уровня фосфора в сыво­ротке и экскреции его с мочой важно брать пробы натощак. Алкалоз также снижает содер­жание фосфора в плазме.

Если из поступающего с пищей кальция в кишечнике всасывается лишь небольшая его доля, то фосфор всасывается гораздо эффективнее. При незначительном потреблении фосфора (менее 2 мг/кг массы тела в сутки) всасывается 80—90%) поступившего его количест­ва. Даже при более высоком потреблении фосфора (больше 10 мг/кг массы тела в сутки) с молочными продуктами, кашами, яйцами и мясом всасывается около 70% его. Поэтому гипофосфатемии вследствие недостаточного всасывания 4зосфора в кишечнике почти не наблюдается, разве только при приеме больших количеств невсасывающихся антацидов; эти соединения связывают фосфор и препятствуют его всасыванию.

Регуляция фосфорного гомеостаза осуществляется в основном почками. Фильтруемый в клубочках фосфор в значительной степени реабсорбируется в проксимальных канальцах (существует также важная для гомеостаза дистальная реабсорбция), так что в норме с мо­чой выводится всего лишь 10—15% фильтруемой нагрузки. При уменьшении последней реабсорбция в проксимальных канальцах возрастает. И наоборот, при увеличении нагрузкифосфором канальцевая реабсорбция уменьшается и возрастает скорость его клиренса. Та­ким образом, экскреция фосфора с мочой в норме отражает его потребление с пищей, а задержка или выведение избыточных количеств этого иона определяется состоянием по­чечных механизмов (рис. 335-3). Убедительных доказательств канальцевой секреции фосфата в почках нет. Реабсорбция фосфора в проксимальных канальцах зависит от одновре­менной реабсорбции натрия, но если натрий, нереабсорбированный в этих канальцах, может реабсорбироваться дистальнее, то для фосфора такой возможности не существует. Поэтому увеличение объема жидкости и снижение реабсорбции натрия сопровождаются увеличением клиренса фосфора: точно так же проксимально действующие диуретики, такие как ацетазоламид, оказывают фосфатурический эффект в той же степени, что и натрийурический.

Патофизиология. Не существует непосредственных симптомов гиперфосфатемии. Од­нако когда содержание фосфора сохраняется на высоком уровне довольно долго, минерализация возрастает и фосфат кальция может откладываться не там, где нужно. Тяжело про­текающая острая гипофосфатемия также не всегда сопровождается клиническими симпто­мами, но если они появляются, то можно наблюдать анорексию, головокружение, боли в костях, слабость проксимальной мускулатуры и утиную походку. При тяжело протекаю­щей гипофосфатемии повышение уровня креатинфосфокиназы (КФК) в сыворотке крови свидетельствует о возможности присоединения к миопатии рабдомиолиза. В аналогичной последовательности появляются патологические изменения у экспериментальных живот­ных при лишении их фосфата. При хронической гипофосфатемии отмечается тяжелая за­стойная кардиомиопатия. Восполнение дефицита фосфора приводило к быстрому исчез­новению патологических сдвигов. Боли в костях и утиную походку объясняют остеомаля­цией, которая развивается в результате снижения содержания фосфата. Мышечная сла­бость — это следствие либо прямого влияния гипофосфатемии на нервы и мышцы, либо — в некоторых случаях —эффект гиперпаратиреоза (первичного или вторичного), который

 

Рис. 335-3. Гомеостаз фосфата.

Схематическое изображение содержания неорганического фосфора (называемого здесь фосфатом) во внеклеточной жидкости (ВКЖ) и костях, а также пище и кале. Величины фосфорных потоков за сутки, рассчитанные различными методами, приведены рядом с путями транспорта в кишечнике, почках и скелете. Указанные пределы колебания величин иллюстрируют специфические аспекты метаболизма фосфора, обсуждаемые в тексте. Всасывание фосфора в кишечнике составляет 85% при низком его пот­реблении (0,5 г при потреблении 0,6 г) и 70% при более высоком потреблении (1,4 г при потреблении 2 г). Количество эндогенного фосфата в кале установлено не столь точно, как для кальция. При низком уровне потребления фосфора к невсосавшемуся его количеству добавляется не менее 0,15 г, что и обус­ловливает общую экскрецию с калом 0,2 г. При высоком потреблении фосфора с пищей поправка на эндогенный фосфат в кале не рассчитана. При любых уровнях потребления с мочой выводятся боль­шие количества фосфора, чем это характерно для кальция при соответствующем его потреблении: вы­водимое количество тесно сопряжено с всосавшимся количеством, что и поддерживает фосфорный ба­ланс (на этой схеме отсутствует поправка на эндогенный фосфат в кале). Следует обратить внимание на то, что в отличие от высокой и относительно постоянной реабсорбции кальция в почках почечная реабсорбция фосфора колеблется от 75% фильтруемой нагрузки до более 85% ее. Пространство, обоз­наченное КЖ, отражает уровень внутриклеточного органического и неорганического фосфора. Быст­рое поступление фосфора в клетки (и соответственно выход его из клеток, который осуществляется. вероятно, медленнее) вносит свой вклад в изменение количества фосфора во ВКЖ. Эти перемещения фосфора между ВКЖ и КЖ, а также высвобождение и поглощение фосфора костной тканью в условиях фосфорного баланса равны.

 

может играть роль в этиологии гипофосфатемии. Иногда снижение уровня фосфата обус­ловливает и нарушение роста у детей. Гипофосфатемия приводит к снижению уровней 2,3-дифосфоглицериновой кислоты и аденозинтрифосфата (АТФ) в эритроцитах, что в свою очередь ведет к нарушению диссоциации оксигемоглобина, обусловливая меньшую до­ставку кислорода к тканям. В результате нарушения способности эритроцитов деформи­роваться в мелких сосудах может развиваться и гемолитическая анемия.

Недостаточность всасывания фосфора в кишечнике редко приводит к отрицательно­му фосфорному балансу (см. рис. 335-3), и поддержание нормального баланса фосфора зависит от эффективности экскреции или задержки его почками. При тяжелой почечной недостаточности из-за нарушения почечного клиренса фосфора развивается гиперфосфа­темия. Врожденные или приобретенные дефекты почечных канальцев могут обусловли­вать гипофосфатемию вследствие недостаточной задержки фосфора в организме.

 

Витамин D

 

Витамин D на самом деле гормон, а не витамин. При достаточном солнечном освеще­нии не требуется никаких добавок к диете. Активное начало витамина D синтезируется под метаболическим контролем путем последовательных гидроксилирований в печени и почках и переносится кровью к своим тканям-мишеням (тонкий кишечник и кость), где оно поддерживает гомеостаз кальция. В регуляции метаболизма витамина D в почках основную роль (прямо или косвенно) играют ионы кальция и фосфата, паратиреоидный гор­мон и, возможно, другие пептидные и стероидные гормоны. Анализ врожденных и приоб­ретенных де(})ектов этих метаболических процессов позволил лучше понять патофизиоло­гию некоторых нарушений обмена кальция и фосфора и метаболизма костной ткани и обус­ловил прогресс в нескольких областях, включая химический синтез активных метаболитов и аналогов витамина D, клиническое применение 1a,25-дигидрокси-витамина D3 [1,25(OH)2D3] при многих резистентных к витамину D состояниях, разработку и внедрение методов определения метаболитов витамина D в крови для подтверждения подозревае­мых нарушений его метаболизма, а также создание более активных аналогов витамина D, пригодных для клинического применения.

 

Фотобиогенез витамина D

 

Витамин D3 — это производное 7-дегидрохолестерина (провитамин D3), ближайшего предшественника холестерина. При экспозиции кожи к солнечному свету или некоторым искусственным источникам света ультрафиолетовые лучи проникают в эпидермис и вызы­вают разнообразные фотобиохимичсские сдвиги, в том числе и превращение 7-дегидрохо­лестерина в витамин D3. Волны длиной 290—315 нм поглощаются конъюгированными двойными связями С5 и С7 7-дегидрохолестерина, что приводит к фрагментации кольца В между С9 и С10 с образованием 9,10-секостерола (секо означает «расщепление») провита­мина D3 (рис. 335-4). Провитамин D3 биологически инертен, но термолабилен и спонтанно подвергается зависимой от температуры молекулярной перестройке на участке своей конъ­югированной триеновой системы (три двойные связи) с образованием термостабильного 9,10-секостерола, витамина D3 (см. рис. 335-4). При температуре тела полное превращение провитамина D3 в витамин D3 происходит примерно за 3 дня. Резкие изменения темпера­туры поверхности кожи не влияют на скорость этого превращения, так как оно происхо­дит в активно растущих слоях эпидермиса, где температура относительно постоянна; из­менения температуры внутренних структур организма также слабо влияют на эту реак­цию. После синтеза витамин D3 из эпидермиса переносится в циркулирующую кровь вита­мин D-связывающим белком. Таким образом, витамин D3 образуется в коже из провита­мина D3 в течение нескольких дней после однократного воздействия солнечных лучей (см. рис. 335-4). Хотя меланин конкурирует с 7-дегидрохолестерином в коже за фотоны ультра­фиолета и тем самым может ограничивать синтез провитамина D,, более важным для пред­отвращения избыточного образования провитамина D3 при длительном воздействии сол­нечного света является, по-видимому, фотохимическая изомеризация провитамина D3 в два биологически неактивных продукта (люмистерол, и тахистерол,).

С возрастом способность кожи производить витамин D3 уменьшается; после 70 лет эта способность снижается более чем вдвое. Защита отдельных участков тела от солнца снижа­ет кожную продукцию витамина D3. На синтез витамина D3 в коже влияет также высота местности над уровнем моря, ее географическое положение, время дня и площадь воздей­ствия света. Когда все тело подвергается воздействию солнечных лучей в дозе, вызываю­щей легкую эритему, содержание витамина D, в крови увеличивается так же, как после приема внутрь 10 000 ME витамина D3 (1 ME содержит 0,025 мкг химически чистого вита­мина D). Необходимость в добавках к диете для профилактики нарушений минерализа­ции скелета возникает только тогда, когда облучение кожи недостаточно, чтобы вызвать образование нужных количеств витамина D3. В начале нашего века для лечения рахита широко применяли жир из печени рыб — природный источник витамина D. В настоящее время к молоку и крупам добавляют кристаллические витамины D2 (см. рис. 335-4) или витамина D3. Эти добавки предотвращают рахит и остеомаляцию. Национальный Совет США по Научным исследованиям рекомендует потреблять в день 400 ME витамина D.

Попав в кровь либо путем всасывания из продуктов питания, либо из кожи, витамин D переносится в печень в связанном со специфическим альфа,-глобулином (витамин D-связывающий белок) виде.

 

Метаболизм витамина D

 

В печени витамин D под действием митохондриального и/или микросомального фер­мента (ферментов) превращается в 25-гидроксивитамина D [25(OH)D] (см. рис. 335-4). 25(OH)D—один из основных присутствующих в крови метаболитов витамина D; его пе­риод полужизни составляет примерно 21 сут. Концентрацию 25(OH)D и некоторых его метаболитов в сыворотке крови определяют методами конкурентного белкового связыва­ния. Нормальная концентрация 25(OH)D, no данным разных лабораторий, варьирует от 5 до 80 нг/мл. У людей, подвергающихся интенсивному солнечному облучению, концентра­ция 25(OH)D может достигать 150 нг/мл без какого-либо отрицательного влияния на об­мен кальция. Те методы, в которых перед оценкой связывания проводят хроматографичес­кое разделение определяемых соединений, часто дают более низкие показатели «нормы». Это, вероятно, объясняется тем, что белок связывает и другие метаболиты витамина D. Нормальные показатели, явно не зависящие от метода определения, в Великобритании ниже, чем в США; в Великобритании не принято обогащать пищевые продукты витами­ном D, а солнечных дней там меньше, чем в большинстве районов США. Уровень 25(OH)D в сыворотке крови обычно отражает содержание и 25-гидроксивитамина D2 [25(OH)D2], и 25-гидроксивитамина D3 [25(OH)D3].

Соотношение между этими двумя 25-гидроксилированными производными зависит от относительных количеств витаминов D2 и D3 в пище и количества провитамина D3, об­разующегося под действием солнечного света.

25-Гидроксилнрование витамина D в печени регулируется механизмом обратной свя­зи. Однако эта регуляция не слишком жесткая: при повышении приема с пищей или эндо­генной продукции витамина D3 концентрация 25(OH)D в сыворотке возрастает. При при­еме больших количеств витамина D концентрация 25(OH)D может превышать 500 нг/мл. Содержание этого соединения в сыворотке снижается при тяжелых хронических пораже­ниях паренхимы и желчных путей печени (табл. 335-1). 25(OH)D в физиологических кон­центрациях биологически неактивен, но in vitro в высоких концентрациях активен. В нор­ме после образования в печени 25(OH)D взаимодействует с обладающим высоким сродст­вом витамин D-связывающим белком, который синтезируется в печени и переносится в почки, где происходит еще одно стереоспсцифическос гидроксилирование либо при С1, либо при С24 (см. рис. 335-4). Почки играют важнейшую роль в превращении 25(OH)D в биоло­гически активный метаболит. При гипокальциемии активность почечной митохондриаль­ной 25(OH)D-1a-гидроксилазы повышается, и тем самым ускоряется превращение 25(OH)D в 1,25(OH)2D. Однако гипокальциемия может влиять на это гидроксилирование не прямо. Любoe снижение концентрации ионов кальция в сыворотке крови ниже нормы—это сти­мул к повышению секреции паратиреоидного гормона. Последний в физиологических ус­ловиях выступает в роли тропного гормона для проксимальных извитых канальцев по­чек, где возрастает синтез 1,25 (OH)2D. Механизм, посредством которого паратиреоидный гормон оказывает свое действие на почечный метаболизм 25(OH)D, неизвестен. Однако продукция 1,25(OH)2D почками коррелирует с влиянием паратиреоидного гормона на кон­центрацию фосфата в крови (и, вероятно, в почечных клетках), которая в таких условиях снижается. Сам 1,25(OH)2D также влияет на метаболизм 25(OH)D в почках, снижая актив­ность 25(OH)D-1a-гидроксилазы и повышая метаболизм 24R, 25-дигидроксивитамина D [24,25(OH)2D].

 

 

Рис. 335-4. Фотобиогенез и метаболические пути образования и обмена витамина D.

Обозначения:7 7-дегидрохолестеринредуктаза, 25 — витамин D-25-гидроксилаза, 1a —

25(OH)D-1a-гидроксилаза, 24R 25(ОН)D—24R.-гидроксилаза, 26 25(ОН)D-26-гидроксилаза.

Отдельно (в квадрате) показаны основные D5,7-диеновые стероидные структуры предшественников ви­тамина D, (эргостерол) и витамина D3 (7-дегидрохолестерин), а также 9,10-секостероидные структуры витамина D2 (эргокальциферол) и витамина D3 (холекальциферол).

 

Цифровые индексы витамина D связаны с порядком, в котором были выделены и охарактеризо­ваны эти соединения. То, что вначале получило название витамин D представляет собой смесь соеди­нений, и в настоящее время это обозначение не применяется. Следующие два вещества группы витами­на D — витамин D2 и витамин D3 — были выделены соответственно из продуктов облучения эргостерола (D5,7-диеновый стероид первоначально был обнаружен в растениях) и 7-дегидрохолестерина (D5,7-диеновый стероидный предшественник холестерина присутствует в тканях животных, включая челове­ка). Витамины D2 и D3 различаются своими боковыми цепями. Боковые цепи витамина D2 содержат D22 и С24-метильную группу.

Хотя витамин D3 — единственная форма витамина D в коже, оба витамина — D2 и D3 — метабо­лизируются одинаково и обладают равной биологической активностью у большинства млекопитаю­щих. Если у витамина D не стоит цифрового индекса, это обозначение может относиться к любому из двух соединений.

 

Таблица 335-1. Концентрации 25(OH)D в сыворотке крови при нарушениях обмена каль­ция и фосфора и метаболизма костной ткани

 

Патологическое состояние Уровень 25 (ОН) D в сыворотке
Недостаточность витамина D Снижен
Синдромы нарушения всасывания в кише­чнике »
Поражения печени (хронические и тяже­лые) »
Нефротический синдром »
Остеопения у пожилых лиц В норме или снижен
Интоксикация витамином D Повышен

 

 

24,25(OH)2D представляет собой циркулирующий метаболит 25(OH)D, содержание которого в сыворотке в норме колеблется от 0,5 до 5 нг/мл. Он также служит субстратом почечной 25(OH)D-1a-гидроксилазы и под ее влиянием превращается в 1a,24R,25-тригидроксивитамин D [1,24,25(OH)3D]. Этот трижды гидроксилированный метаболит стимули­рует транспорт ионов кальция в кишечнике слабее, чем 1,25(OH)2D. И грает ли он физиоло­гическую роль в поддержании кальциевого гомеостаза, неясно. К клеткам, которые обла­дают способностью превращать 25(OH)D в 24,25(OH)2D, относятся также культивируе­мые хондроциты, фибробласты кожи, клетки кишечника и гипофиза. 24,25(OH)2D мог бы иметь значение для экспрессии эффектов витамина D, особенно в костях скелета. Однако по вопросу о биологической значимости самого 24,25(OH)2D вне эффектов, связанных с его превращением в 1,24,25(OH)3D, существуют разногласия.

Почки метаболизируют 25(OH)D и в 25S,26-дигидроксивитамин D [25,26(ОН)2D].Это соединение, подобно 24,25(OH)2D, превращается в почках в 1a,25S,26-тригидроксивитамин D [1,25,26(OH)3D], который в отношении индукции транспорта ионов кальция в ки­шечнике менее активен, чем 1,25(OH)2D, и физиологическая функция которого остается неизвестной.

1,25(OH)2D служит субстратом 25(ОН)D-24R-гидроксилазы и превращается в 1,25,25(OH)3D, но это превращение не имеет решающего значения для проявления биоло­гической активности 1,25(OH)2D. Идентифицировано более 20 метаболитов витамина D. Все они являются производными 25(OH)D или 1,25(OH)2D, и большинство представляет собой продукты деградации витамина. Особое внимание привлекает метаболическая пос­ледовательность, обеспечивающая инактивацию 1,25(OH)2D путем окислительного отщеп­ления боковой цепи между С23 и С24 с образованием биологически инертного и водорас­творимого соединения — 1a-гидроксивитамин D-23-карбоновой кислоты.

В номенклатуре стероидов те заместители на кольцевом скелете, которые ориентированы в про­странстве ниже плана молекулы (показано пунктирными линиями), называются a-заместителями, а те, которые расположены над планом молекулы (показано сплошными линиями), — b-заместителями. По­скольку витамин D это структурное производное D5,7-диенового стероида, нумерацию атомов углеро­да и стереохимические обозначения функциональных групп для удобства оставили теми же, что и в стероиде-предшественнике. В процессе превращения D5,7-диен ® провитамин D ® витамин D геомет­рическое положение кольца А изменяется, что меняет и стереохимическую ориентацию его заместите­лей; тем не менее сохранены исходные обозначения гидроксильных функций кольца А (как в стероид­ном предшественнике). Буквы R и S в обозначении вещества (например, 24R,25-дигидроксивитамин D3) указывают на пространственную конфигурацию заместителя по отношению к асимметрическому углеродному центру.

 

Физиологическая роль витамина D

 

1,25(OH)2D, продуцируемый почками, а во время беременности и плацентой, — это единственный известный метаболит витамина D, играющий физиологически значимую роль. Возможное значение других метаболитов не установлено. 1,25(OH)2D в комплексе с витамин D-связывающим белком переносится к кишечнику, клетки которого поглощают свободную форму и транслоцируют ее к специфическому рецепторному белку ядра. Взаи­модействие 1,25(OH)2D со своим специфическим ядерным рецептором приводит к фосфорилированию рецепторного комплекса, а последующее взаимодействие с хроматином ак­тивирует транскрипцию генов, продукты которых стимулируют транспорт ионов кальция и фосфата из просвета тонкого кишечника в кровь. Считают, что в физиологических условиях действие 1,25(ОН)2D синергично действию паратгормона па резорбцию кости. Одна­ко влияние физиологических концентраций 1,25(OH)2D на кость в отсутствие паратирео­идного гормона не установлено. Тем не менее 1,25(OH)2D в сверхфизиологическнх кон­центрациях способен и независимо от паратиреоидного гормона мобилизовать костные минералы, способствуя дифференцировке моноядерных клеток-предшественников в осте­окласты. Обладает ли 1,25(OH)2D прямым эффектом на почечную динамику кальция и фосфора, также неизвестно.

Цитоплазматические рецепторы 1,25(ОН)2D3 присутствуют в кости, клетках почечных канальцев, а также в тех тканях и клетках, которые не принято относить к классическим органам-мишеням этого гормона, в том числе в коже, молочных железах, гипофизе, око­лощитовидных железах, b-клетках островков поджелудочной железы, половых железах, головном мозге, скелетных мышцах, моноцитах крови и активированных В- и Т-лимфо­цитах. Хотя физиологическая роль 1,25(OH)2D в этих клетках остается неясной, in vitro он ингибирует пролиферацию фибробластов, стимулирует последний этап дифференцировки кератиноцитов человека; индуцирует продукцию интерлейкина-1 моноцитами и их со­зревание в макрофаги и остеокластоподобные клетки, угнетает продукцию имтерлейкина-2 Т-лимфоцитами и стимулирует синтез и секрецию тиреотропного гормона (ТТГ) клетками гипофиза. Кроме того, рецепторами 1,25(OH),D обладают клеточные линии разнообразных опухолей, включая рак молочной железы и меланомы, а также промиелобласты.

В культуре клеточные линии опухолей, обладающие рецепторами к этому гормону, реагируют на него снижением скорости пролиферации и повышением степени дифферен­цированности. Например, при добавлении 1,25(OH)2D3 к злокачественным обладающим рецепторами промиелоцитам человека (HL-60) эти клетки уже через неделю созревают в функционирующие макрофаги. Хотя механизм индукции созревания под действием 1,25(OH)2D3 неизвестен, это вещество уменьшает экспрессию онкогена c-myc, что со­гласуется с торможением репликации. Однако этот эффект непродолжителен. Если уда­лить гормон из среды созревающих промиелоцитов HL-60, то клетки возвращаются к своему исходному злокачественному состоянию, а экспрессия онкогена c-myc растор­маживается.

Значение 1,25(OH)2D в регуляции дифференцировки и процессов иммунного контро­ля неизвестно. У больных с витамин D-зависимым рахитом II типа, которые неспособны реагировать на физиологические концентрации 1,25(OH)2D3 (из-за дефицнта или патоло­гии рецепторов этого гормона), явных нарушений клеточного иммунного ответа in vivo не обнаруживается; 1,25(OH)2D3 мог бы индуцировать дифференцировку стволовых клеток костного мозга в остеокласты. .

В большинстве случаев концентрацию 1,25(OH)2D в крови при различных физиологических и патологических состояниях у человека определяют с помощью рецепторного метода конкурентного связывания (табл. 335-2). Содержание витамина D и 25(OH)D в сыворотке крови меняется в зависимости от сезона года и от потребления витамина D. Однако концентрация 1,25(OH)2D в сыворотке, по-видимому, не зависит ни от сезона, ни от повышения приема витамина D с пищей, ни от воздействия солнечного света; пока поступление витамина D и концентрация 25(OH)D в крови достаточны, метаболические влияния, осуществляющиеся на уровне почечной 25(OH)D-1a-гидроксилазы, обеспечи­вают строгую регуляцию уровня 1,25(OH)2D в крови. Содержание 1,25(OH)2D в сыво­ротке крови колеблется от 25 до 75 пг/мл, а период его полужизнн в сыворотке — от 3 до 6 ч.

При падении уровня кальция в сыворотке ниже нормы возрастает секреция паратиреоидного гормона, что приводит к усилению продукцию 1,25(OH)2D. Основной меха­низм физиологической регуляции продукции 1,25(OH)2D включает, по-видимому, изме-

 

Таблица 335-2. Концентрации 1,25(OH)2D. в сыворотке крови при нарушениях обмена кальция и фосфора и метаболизма костной ткани

 

Патологическое состояние Уровень, 1,25(ОН)2D в сыворотке
Дефицит витамина D Понижен1
Почечная недостаточность:    
СКФ выше 30 мл/мин на 1,7 м2 Понижен или в пределах нормы
СКФ ниже 30 мл/мин на 1,7 м2    
Гипопаратиреоз То же
Псевдогипопаратиреоз » »
Витамин D-зависимый рахит:    
I тип » »
II тип Повышен или в пределах нормы
Сцепленный с Х-хромосомон рахит, резистентный к витамину D Понижен или в пределах нормы
Опухолевая остеомаляция Понижен
Онкогенная гиперкальциемия »
Некоторые лимфомы Повышен
Гиперпаратиреоз »
Саркоидоз, туберкулез, силикоз »
Идиопатическая гиперкальциурия Повышен или в пределах нормы
Синдром Уильямса Повышен
Интоксикация витамином D Понижен или в пределах нормы

 

 

1 У отдельных больных с доказанной при биопсии остеомаляцией и неопределяемым или низким уровнем 25(OH)D в крови концентрация 1,25(OH)2D в сыворотке в пределах нор­мы или повышена. У таких больных имеется также вторичный гиперпаратиреоз, и они могут находиться в частично компенсированном состоянии; даже при поступлении с пи­щей или образовании в коже небольших количеств витамина D он эффективно превра­щается в 1,25(OH)2D. В результате на фоне низких или не поддающихся определению кон­центраций 25(OH)D в крови будут иметь место нормальные или повышенные концентра­ции 1,25(OH)2D. Однако при крайнем дефиците витамина D концентрация 1,25(OH)2D в крови низка или не поддается определению. СКФ — скорость клубочковой фильтрации.

нения уровня кальция в сыворотке, приводящие к реципрокным изменениям секреции па­ратиреоидного гормона, который, действуя, возможно, на концентрацию фосфора в сыво­ротке или тканях, контролирует скорость продукции 1,25(OH)2D. К другим факторам, по­вышающим продукцию 1,25(OH)2D у животных, относятся эстрогены, пролактин и гор­мон роста. У человека повышенная потребность в кальции в период роста, при беремен­ности и лактации удовлетворяется путем усиления всасывания кальция в кишечнике вслед­ствие, вероятно, увеличения активности 25(OH)D-1a-гидроксилазы. В течение I и II три­местров беременности содержание 1,25(OH)2D возрастает пропорционально увеличению концентрации витамин D-связывающего белка; уровень свободного 1,25(OH)2D не меня­ется. В течение же последнего триместра, когда происходит максимальная минерализация костей скелета плода, повышенная потребность в кальции удовлетворяется путем увеличе­ния концентрации свободного 1,25(OH)2D, который в свою очередь усиливает всасыва­ние кальция в кишечнике.

 

Патофизиология нарушений поступления витамина D с пищей и его обмена

 

Гиповитаминоз D развивается вследствие недостаточной эндогенной продук­ции витамина D3 в коже, недостаточного его поступления с пищей и/или при нарушении способности тонкого кишечника всасывать витамин D из пищевых продуктов. Патологи­ческие состояния, эквивалентные гиповитаминозу D, обусловливаются: 1) действием фар­макологических средств, препятствующим осуществлению эффектов витамина D; 2) нару­шением обмена витамина D или 3) дефицитом или патологией клеточных рецепторов ме­таболитов витамина D. Гиповитаминоз D приводит к нарушению метаболизма минераль­ных ионов и секреции паратиреоидного гормона, а также нарушению минерализации кос­тей скелета (например, рахиту у детей, остеомаляции у взрослых). Изменения в костях ске­лета описаны в гл. 337. Что касается кальциевого обмена, то выпадение эффекта витамина D приводит к недостаточности кишечного всасывания ионов кальция и гипокальциемии. Последнее индуцирует компенсаторный вторичный гиперпаратиреоз. Повышенная секре­ция паратиреоидного гормона, который высвобождает кальций из костей и замедляет его клиренс в почках, направлена на смягчение гипокальциемии. (На поздних стадиях нелече­ного гиповитаминоза D все же развивается тяжелая гипокальциемия.) При недостаточ­ности витамина D, особенно на ее ранних стадиях, гипофосфатемия выступает ярче, чем гипокальциемия. При тяжелой недостаточности витамина D всасывание фосфата в кишеч­нике, подобно тому, что происходит с всасыванием ионов кальция, снижается. Повышен­ная секреция паратиреоидного гормона, хотя отчасти и ограничивает гипокальциемию, обусловливает потерю фосфата с мочой, снижая его реабсорбцию в почечных канальцах. Последний эффект мог бы играть наиболее значительную роль среди причин гипофосфа­темии. При достаточной скорости клубочковой фильтрации наиболее заметными измене­ниями со стороны крови являются тяжелая гипофосфатемия, умеренное или небольшое снижение уровня кальция в сыворотке и повышение содержания паратиреоидного гормо­на. Уровень 25(OH)D в крови снижен (см. табл. 335-1), Как отмечается в гл. 337, эти нару­шения в метаболизме минеральных ионов могут сопровождаться сдвигами в минерализа­ции костей скелета.

Хотя при заболеваниях печени нарушается превращение витамина D в 25(OH)D, тес­ной корреляции между низким уровнем 25(OH)D в сыворотке и остеопенией нет; на мета­болизм костной ткани влияют, по-видимому, множественные последствия основного за­болевания. Имеется связь между длительной противосудорожной терапией и развитием остеомаляции или рахита; дефекты минерализации усугубляются у больных, получающих большое количество лекарств, и у тех, кто потребляет недостаточное количество витамина D или испытывает недостаточное солнечное освещение. Эти лекарственные средства ока­зывают многочисленные и сложные эффекты на кальциевый обмен. Фенобарбитал инду­цирует синтез микросомальных ферментов в печени, изменяет кинетику витамин D-25-гидроксилазы и стимулирует секрецию желчи, что приводит к снижению концентрации вита­мина D и 25(OH)D в сыворотке крови. Как фенитоин, так и фенобарбитал влияют на об­мен кальция, ингибируя его транспорт в кишечнике и мобилизацию костных минералов независимо от действия на метаболизм витамина D

Высокие дозы глюкокортикоидов вызывают нарушения кальциевого обмена и остео­пороз, но остеомаляция и рахит как таковые при глюкокортикоидной терапии не развива­ются. Действие глюкокортикоидов на витамин D-зависимый метаболизм кальция вклю­чает прямой ингибиторный эффект на опосредованные витамином D всасывание кальция в кишечнике и мобилизацию костных минералов, а также повышение чувствительности костных клеток к 1,25(OH)2D3 за счет либо стабилизации рецепторов 1,25(OH)2D3, либо увеличения сродства или числа этих рецепторов. У больных, длительно получающих глю­кокортикоиды, концентрация 1,25(OH)2D в сыворотке может быть пониженной. Механизм (механизмы) этого явления неизвестны.

Генетический дефект печеночного 25-гидроксилирования витамина D не описан. Од­нако при одном из врожденных нарушений обмена кальция и метаболизма костной ткани может быть нарушена почечная продукция 1,25(OH)2D. При синдроме псевдовитамин D-дефицитного рахита (известном также под названием витамин D-зависимого рахита I типа; см. гл. 337) низкую концентрацию 1,25(OH)2D в сыворотке и нормальную терапевтичес­кую реакцию нафизиологическиедозы 1,25(OH)2D3 (кальцитриола) (0,25—1 мкг/сут) от­носят за счет врожденной недостаточности почечной 25(OH)D-1a-гидроксилазной актив­ности. Кроме того, у больных со сходным фенотипом — псевдовитамин D-резистентным рахитом (витамин D-зависимым рахитом I типа) имеется, очевидно, дефицит (или нару­шение) рецепторов 1,25(OH)2D, а не нарушение метаболизма витамина. У таких боль­ных концентрация 1,25(OH)2D в сыворотке повышена; эффективность терапии высоки­ми дозами витамина D объясняется дальнейшим увеличением концентрации 1,25(OH)2D в сыворотке.

У больных со сцепленным с Х-хромосомой гипофосфатемическим рахитом концен­трация 1,25(OH)2D в сыворотке нормальна или понижена. Поскольку гипофосфатемия слу­жит мощным стимулятором почечной 25(ОН)D-1a-гидроксилазы, концентрация 1,25(OH)2D в сыворотке должна быть высокой. Поэтому даже нормальная концентрация этого соединения в сыворотке свидетельствует о функциональном нарушении в системе 25(OH)D-1a-гидроксилазы. В некоторых случаях комбинация кальцитриола с фосфатны­ми добавками обладает лучшим терапевтическим эффектом, чем сам фосфат (см. гл. 337). У больных с хронической почечной недостаточностью легкой и умеренной степени (ско­рость клубочковой фильтрации выше 30 мл/мин) и сниженным клиренсом фосфата гипер­фосфатемия и ацидоз играют важную роль в уменьшении почечной продукции 1,25(OH)2D, несмотря на высокую концентрцию паратиреоидного гормона в крови. По мере прогрес­сирования деструкции коркового слоя почек резервы 25(OH)D-1a-гидроксилазы истоща­ются так, что почки уже не в состоянии вырабатывать достаточные для поддержания каль­циевого гомеостаза количества 1,25(OH)2D даже при нормальной концентрации фосфора в сыворотке. В таких условиях заместительная терапия кальцитриолом особенно эффек­тивна (см. гл. 337).

У больных с гипопаратиреозом и псевдогипопаратиреозом содержание 1,25(OH)2D в сыворотке в среднем ниже нормы, хотя разброс индивидуальных показателей перекрыва­ет границы нормальных колебаний. Назначение таким больным с гипокальциемией не­больших заместительных доз кальцитриола (0,25—1 мкг/сут; см. гл. 336) дает положитель­ный эффект даже в случаях более высоких, чем в норме, концентраций 25(OH)D в сыворот­ке. Эти данные согласуются с представлением о том, что у больных с гипопаратиреозом или псевдогипопаратиреозом из-за отсутствия паратиреоидного гормона или выпадения ею влияния нарушена функция почечной 25(OH)D-1a-гидрокснлазы. Пока неясно, до ка­кой степени можно нормализовать концентрацию 1,25(OH)2D в сыворотке путем ликви­дации гипофосфатемии.

У больных с остеомаляцией, вызванной опухолью (онкогенной), содержание фосфора и 1,25(OH)2D в сыворотке снижено; предполагают, что эти опухоли секретируют вещество (или вещества), обусловливающие потерю фосфора с мочой и торможение синтеза 1,25(OH)2D. После удаления опухоли содержание фосфора и 1,25(OH)2D в сыворотке нор­мализуется.

При патологических состояниях, аналогичных гипервитаминозу D, таких как саркои­доз (и другие хрони ческие гранулематозные заболевания), лимфомы, идиопатическая ги­перкальциурия и синдром Уильямса, нарушено превращение 25(OH)D в 1,25(OH)2D (см. табл. 335-2). Гиперкальциемия при саркоидозе связана с повышенным уровнем 1,25(OH)2D в сыворотке; саркоидные гранулемы нерегулируемо превращают 25(OH)D в 1,25(OH)2D. Последний синтезируется также макрофагами из легочных альвеол больных саркоидозом. Кроме того, даже нормальные легочные макрофаги в присутствии липополисахаридов из клеточных оболочек грамотрицательных бактерий или гамма-интсрферона начинают пре­вращать 25(OH)D в 1,25(OH)2D. У большинства больных с опухолевой гиперкальциемией концентрации 1,25(OH)2D в сыворотке понижены (см. табл. 335-2). Исключение составля­ют больные с некоторыми видами лимфом (включая Т-клеточные, смешанные гистноцитарно-лимфоцитарпые и В-клеточные иммунобластные лимфомы), гиперкальциемия у ко­торых протекает на фоне повышения концентрации 1,25(OH)2D. В одном из наблюдений после хирургического удаления солитарной лимфомы селезенки содержание 1,25(OH)2D и кальция в сыворотке быстро понизилось до нормы, что свидетельствуете нерегулируемом превращении 25(OH)D в 1,25(OH)2D клетками лимфомы. У больных с первичным гипер­паратиреозом существует прямая связь между повышенной концентрацией 1,25(OH)2D в сыворотке, гиперкальциурией и нефролитиазом. Подобно этому, всасывание кальция в кишечнике оказывается неадекватно высоким в некоторых случаях идиопатической ги­перкальциурии. Примерно у 30% таких больных повышена и концентрация 1,25(OH)2D в сыворотке. Эти данные не противоречат гипотезе, согласно которой усиленное всасыва­ние кальция в тонком кишечнике обусловлено чрезмерной продукцией 1,25(ОН)2D. У де­тей, страдающих гиперкальциемией и надклапанным стенозом аорты, задержкой психи­ческого развития и с «лицом эльфа» (синдром Уильямса) концентрация 1,25(OH)2D в сыворотке также повышена. Обусловлено ли это изменением синтеза или распада 1,25(OH)2D, неясно.

 

Фармакология витамина D и его метаболитов

 

Имеющиеся в продаже препараты витаминов содержат по 400 ME витамина D2 или D3. В больших дозах витамин D (кальциферол) выпускается в виде капсул и таблеток (50 000 ME), в масляном растворе (500 000 МЕ/мл) и в растворе для перорального приме­нения (8000 МЕ/мл). После однократного приема внутрь 50 000 ME витамина D концен­трация его в крови повышается через 12—24 ч с







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.