Здавалка
Главная | Обратная связь

Пути повышения эксплуатационных характеристик тепловых реакторов



Вопросы к теме

1. Реактор на тепловых нейтронах

2. Корпус ядерного реактора

3. Гомогенные реакторы

4. Гетерогенные реакторы

5. Замедлитель. Коэффициент замедления.

6. Канальный и корпусный реактор.

7. Регулирующие стержни.

8. Номинальный режим реактора.

9. Защитные системы безопасности.

10. Газоохлажаемые реакторы.

11. Реактор на быстрых нейтронах.

 

В данной главе мы рассмотрим два основных типов ядерных реакторов: «медленный» реактор, под которым будем иметь в виду реактор, работающий на тепловых нейтронах, и «быстрый» реактор, работающий на быстрых нейтронах деления.

2.1 Реактор на тепловых нейтронах. Рассмотрим основные особенности реактора, работающего на медленных (тепловых) нейтронах в режиме атомной электростанции (АЭС). Тремя обязательными элементами для реакторов на тепловых нейтронах являются тепловыделитель, замедлитель, теплоноситель и корпус.

 

Рис.1 Схема активной зоны «медленного» реактора

Активная зона - центральная часть реактора, в которой протекает самоподдерживающаяся цепная реакция деления и выделяется энергия.

Корпус ядерного реактора - герметичный резервуар, предназначенный для размещения в нем активной зоны и других устройств, а также для организации безопасного охлаждения ядерного топлива потоком теплоносителя.

В качестве горючего обычно используется уран-235 в смеси с ураном-238 (обсуждение особенностей применения в качестве горючего разных делящихся нуклидов обсуждено в других лекциях). Может использоваться природный уран (например, в тяжеловодных реакторах), но, как правило, применяют низко обогащенный уран (в энергетических реакторах на тепловых нейтронах, обогащение до 4,4%) либо высоко обогащенный (до 40%) уран (в транспортных реакторах).

Количество потребляемого в реакторе топлива пропорционально мощности реактора. При делении 1 г 235U высвобождается 1 тыс. кВт/день. Для получения такого количества тепловой энергии необходимо сжечь 3 т угля или 3 тыс. л нефти. Для гетерогенных уран-графитовых ядерных реакторов минимальное необходимое количество природного урана составляет 45 т, а 6 графита - 450 т. В ядерном реакторе происходит быстрая смена поколений нейтронов. Среднее время жизни нейтронов в реакторах разных типов 10-3 - 10-8 с. Между мощностью ядерного реактора и скоростью протекания в нем цепной реакции деления ядер существует определенное соотношение: в реакторе тепловой мощностью 1 МВт происходит 3,3. 1016 дел./сек.

Ядерное горючее в реакторах может быть распределено в активной зоне гомогенно или гетерогенно. В последнем случае топливо в реакторе располагается в виде тепловыделяющих элементов (TВЭЛов), образующих решетку в среде замедлителя и теплоносителя. В связи с этим, по расположению в активной зоне делящегося вещества и замедлителя все реакторы принято делить на гетерогенные (неоднородные) и гомогенные (однородные).

 

Гомогенные реакторы

Гомогенный реактор - реактор, активная зона которого представляет собой гомогенную размножающую среду (однородную смесь). В таком реакторе топливо и замедлитель (возможно, и другие компоненты активной зоны) находятся либо в растворе, либо в достаточно равномерной смеси, либо пространственно разделены, но так, что разница в потоках нейтронов любых энергий в них несущественна.

В гомогенном реакторе ядерное топливо, теплоноситель и замедлитель (если они есть) тщательно перемешаны и находятся в одном физическом состоянии, т.е. активная зона полностью гомогенного реактора представляет жидкую, твердую или газообразную однородную смесь ядерного топлива, теплоносителя или замедлителя. Гомогенные реакторы могут быть как на тепловых, так и на быстрых нейтронах. В таком реакторе вся активная зона находится внутри стального сферического корпуса и представляет жидкую однородную смесь горючего и замедлителя в виде раствора или жидкого сплава (например, раствор уранилсульфата в воде, раствор урана в жидком висмуте), который одновременно выполняет и функцию теплоносителя.

Гомогенное ядерное горючее может представлять собой водные растворы солей урана и плутония, расплавы солей или металлов (например, сплавы U, Pu, Th с Pb, Bi, Sn и пр.). Гомогенное ядерное горючее одновременно является теплоносителем реактора и непрерывно циркулирует через теплообменник. Продукты деления распределены равномерно по всему объему жидкой фазы. Особым случаем гомогенного ядерного горючего является дисперсное топливо, представляющее собой, например, взвесь частиц окиси урана в водном растворе. Ввиду малого размера частиц в таком топливе происходит обеднение дисперсной фазы продуктами деления.

Ядерная реакция деления происходит в топливном растворе, находящемся внутри сферического корпуса реактора, в результате температура раствора повышается. Горючий раствор из реактора поступает в теплообменник, где отдает теплоту воде второго контура, охлаждается и циркулярным насосом направляется опять в реактор. Для того чтобы ядерная реакция не произошла вне реактора, объемы трубопроводов контура, теплообменника и насоса подобраны так, чтобы объем горючего, находящегося на каждом участке контура, были намного ниже критического. Гомогенные реакторы имеют ряд преимуществ по сравнению с гетерогенными. Это несложная конструкция активной зоны и минимальные ее размеры, возможность в процессе работы без остановки реактора непрерывно удалять продукты деления и добавлять свежее ядерное топливо, простота приготовления горючего, а также то, что управлять реактором можно, изменяя концентрацию ядерного топлива.

Однако гомогенные реакторы имеют и серьезные недостатки. Гомогенная смесь, циркулирующая по контуру, испускает сильное радиоактивное излучение, что требует дополнительной защиты и усложняет управление реактором. Только часть топлива находится в реакторе и служит для выработки энергии, а другая часть - во внешних трубопроводах, теплообменниках и насосах. Циркулирующая смесь вызывает сильную коррозию и эрозию систем и устройств реактора и контура. Образование в гомогенном реакторе в результате радиолиза воды взрывоопасной гремучей смеси требует устройств для ее дожигания. Все это привело к тому, что гомогенные реакторы не получили широкого распространения.

 

Гетерогенные реакторы

В гетерогенных реакторах ядерное топливо в виде блоков размещено в замедлителе, т.е. топливо и замедлитель пространственно разделены. Горючее и замедлитель представляют собой неоднородную среду для нейтронов.

Гетерогенный реактор имеет активную зону в виде гетерогенной размножающей среды. В таком реакторе топливо в виде цилиндрических стержней (или пластин) выделено пространственно так, что создает основу решетки активной зоны - системы топливных и других материалов, расположенных в определенной периодической последовательности.

Тепловыделяющий элемент, ТВЭЛ - герметично заваренная заглушками трубка, с таблетками топлива.

Топливная кассета - конструкция из таблеток урана и собирающего вместе с ними корпуса толщиной 10- 20 см и длиной в несколько метров, являющаяся выделителем энергии за счет распада урана. Материалом корпуса обычно является цирконий. В настоящее время для энергетических целей проектируют только гетерогенные реакторы. Ядерное топливо в таком реакторе может использоваться в газообразном, жидком и твердом состояниях. Однако сейчас гетерогенные реакторы работают только на твердом топливе.

Как правило, ТВЭЛы, являющиеся основными элементами активной зоны, объединяются в тепловыделяющие сборки, ТВС. ТВС представляет собой топливную кассету и ее крепление и находится в активной зоне реактора. Активную зону окружает отражатель (материал - вода или графит), предотвращающий утечку нейтронов. Нейтроны, попавшие в отражатель, рассеиваются его ядрами, при этом некоторые из них после рассеивания возвращаются в активную зону.

В зависимости от замедляющего вещества гетерогенные реакторы делятся на графитовые, легководные, тяжеловодные и органические. По виду теплоносителя гетерогенные реакторы бывают легководные, тяжеловодные, газовые и жидкометаллические. Жидкие теплоносители внутри реактора могут быть в однофазном и двухфазном состояниях. В первом случае теплоноситель внутри реактора не кипит, а во втором - кипит. Реакторы, в активной зоне которых температура жидкого теплоносителя ниже температуры кипения, называются реакторами с водой под давлением, а реакторы, внутри которых происходит кипение теплоносителя, - кипящими. В зависимости от используемого замедлителя и теплоносителя гетерогенные реакторы выполняются по разным схемам. В России основные типы ядерных энергетических реакторов - водо-водяные и водографитовые.

В реакторах на тепловых нейтронах деление ядер топлива происходит также при захвате ядром быстрых нейтронов, но вероятность этого процесса незначительна (1 - 3 %). Необходимость замедлителя нейтронов вызывается тем, что эффективные сечения деления ядер топлива намного больше при малых значениях энергии нейтронов, чем при больших.

Поэтому активная зона реактора помимо топлива содержит замедлитель нейтронов, т.е. вещество, предназначенное для уменьшения кинетической энергии нейтронов до величин около 1 эВ. Замедлителем могут быть вещества, обладающие достаточно малой атомной массой, малым коэффициентом поглощения нейтронов и слабой активационной способностью. Наиболее широкое применение в качестве замедлителя нашли обычная вода, тяжелая вода и графит. Эффективность использованного замедлителя нейтронов определяется величиной коэффициента замедления.

Рис.2 Блок-схема атомного реактора на тяжелой воде, работающего в составе канадской АЭС типа КАНДУ

Замедлитель - вещество с малой атомной массой, служащее для замедления, образующихся при делении ядер нуклидов, нейтронов с высокой энергией (0,5-10 МэВ) до тепловых энергий (менее 1 эВ).

Коэффициент замедления - вместе с замедляющей способностью характеризуют свойства материалов-замедлителей. Наилучшей замедляющей способностью обладает обычная (легкая) вода вследствие большого сечения рассеяния тепловых нейтронов. Поэтому в легководных реакторах размеры активной зоны наименьшие. Однако при этом концентрация делящихся нуклидов в ядерном топливе должна быть достаточно высокой, т. е, оно должно быть обогащенным. Это обусловлено большим сечением поглощения нейтронов в обычной воде. Коэффициент замедления графита в 3 раза больше, чем легкой воды, но значительно ниже по сравнению с тяжелой водой. Поэтому в реакторах с графитовым замедлителем критическая масса меньше, чем в легководных реакторах, но больше, чем в тяжеловодных. Замедляющая же способность графита наименьшая из этих трех замедлителей. Таким образом, активные зоны реакторов с графитовым замедлителем имеют наибольшие размеры. В них можно использовать топливо с низким обогащением по делящемуся нуклиду.

Тепловой реактор может работать на природном уране, если замедлителем служит тяжелая вода или графит. При других замедлителях необходимо использовать обогащенный уран. От степени обогащения топлива зависят необходимые критические размеры реактора: с увеличением степени обогащения они меньше. Существенным недостатком реакторов на тепловых нейтронах является потеря медленных нейтронов в результате захвата их замедлителем, теплоносителем, конструкционными материалами и продуктами деления. Поэтому в таких реакторах в качестве замедлителя, теплоносителя и конструкционных материалов необходимо использовать вещества с малыми сечениями захвата медленных нейтронов.

В Канаде и Америке разработчики ядерных реакторов при решении проблемы поддержания в реакторе цепной реакции предпочли использовать в качестве замедлителя тяжелую воду. У такой воды очень низкая степень поглощения нейтронов и очень высокие замедляющие свойства, превышающие аналогичные свойства графита. Поэтому реакторы на тяжелой воде (Рис.2) работают на необогащенном топливе, что позволяет не строить сложные и опасные предприятия по обогащению урана. Хорошо спроектированный и построенный реактор на тяжелой воде (например, САNDU) может работать долгие годы на естественном (не обогащенном) уране и давать дешевую энергию. Но из-за дороговизны производства тяжелой воды и из-за неизбежных утечек ее из трубопроводов, суммарные затраты на эксплуатацию реактора велики и сравнимы с аналогичными у РБМК и ВВЭР. В качестве теплоносителя может использоваться тоже тяжелая вода, хотя есть реакторы, где замедлитель – тяжёлая, а теплоноситель - легкая вода.

Предпринимались попытки использования в качестве теплоносителей органических жидкостей. В частности, в Курчатовском институте был создан реактор «Арбус». Предполагалось отправить его в Антарктиду. Он не оправдал надежд и был разобран. Оказалось, что органика подвержена воздействию нейтронов и гамма-квантов, в ней происходят необратимые изменения. Потому от дальнейших работ в этом направлении отказались и в России и в Америке.

Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, от вида и количества замедлителя, от формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону сокращает утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно он выполняется из графита, тяжелой воды или бериллия.

Для охлаждения реактора и отвода тепловой энергии, выделяющейся при делении, используется теплоноситель, циркулирующий через активную зону. Выделившаяся в результате деления тепловая энергия передается таблетке, а затем – оболочке твэла. Теплоноситель, омывая оболочку, снимает тепловую энергию и нагревается. В качестве теплоносителя может использоваться обычная или тяжелая вода, органическая жидкость или газ. Чем больше разность температур между горячей и холодной точками, тем больше тепловой поток. Однако температуру нельзя поднимать до бесконечности, максимальная температура таблетки топлива ограничена температурой плавления материала (для UO2 она равна 1800 о С). Самая горячая точка таблетки находится в ее середине. Для оболочки твэла из циркония, максимальная температура 320-350 о С. При большей температуре прочностные характеристики оболочки ухудшаются (повышается ползучесть). В процессе эксплуатации реактора необходимо не допускать превышения предельных температур, поскольку разрушение ТВЭЛа ведет к выходу сильно радиоактивных продуктов деления в теплоноситель и их разнос по трубопроводам.

По конструктивному исполнению реакторы подразделяются на корпусные и канальные. В корпусных реакторах давление теплоносителя несет корпус. Внутри корпуса реактора течет общий поток теплоносителя. В канальных реакторах теплоноситель подводится к каждому каналу с топливной сборкой раздельно. Корпус реактора не нагружен давлением теплоносителя, это давление несет каждый отдельный канал. В таких реакторах топливо и теплоноситель находятся не только в поле высоких температур, но и в поле высоких давлений, что накладывает дополнительные требования на используемые конструкционные материалы.

Канальный реактор - ядерный реактор, в активной зоне которого топливо и циркулирующий теплоноситель содержатся в отдельных герметичных технологических каналах, способных выдержать высокое давление теплоносителя.

Корпусной реактор - ядерный реактор, активная зона которого находится в корпусе, способном выдержать давление теплоносителя и тепловые нагрузки. Высокое давление теплоносителя в легководных реакторах, которые по конструктивному исполнению являются корпусными, требует наличия прочного толстостенного стального корпуса.

В качестве теплоносителя применяется, как правило, обычная вода. Такие реакторы бывают двух типов: реактор с кипящей водой (канальный реактор, например, РБМК) и с водой под давлением (корпусной реактор, например, ВВЭР). В первом случае вода внутри реактора превращается в пар, который направляется непосредственно на турбины. Во втором - вода находится под высоким давлением, поэтому не превращается в пар внутри реактора, несмотря на высокую температуру, а, будучи заключена в герметичный контур, передает тепловую энергию 10 воде второго контура в теплообменнике. Во втором контуре давление ниже, поэтому в нем вода превращается в пар и поступает на турбину, где теряет часть своей энергии на выработку электричества. В качестве теплоносителя в таких реакторах может использоваться и тяжелая вода, HDO (изредка D2O).

Для предотвращения образования отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. В процессе работы реактора теплоноситель становится радиоактивным. Поэтому протечки теплоносителя недопустимы. В связи с этим контур теплоносителя АЭС замкнут и герметичен. Из турбины теплоноситель поступает в конденсатор для пара, обеспечивающий поступление в реактор теплоносителя с нужными для оптимальной работы параметрами.

Рис.3. Блок схема атомного реактора с шаровой засыпкой

 

Система управления реактором состоит из набора стержней диаметром в несколько сантиметров и длиной, сопоставимой с высотой активной зоны, состоящих из поглотителей нейтронов (высокопоглощающий нейтроны материал обычно включает соединения бора). Стержни располагаются в специальных каналах и могут быть подняты или опущены в реактор. В поднятом состоянии они способствуют разгону реактора, в опущенном - заглушают его. Приводы стержней регулируются независимо друг от друга, поэтому с их помощью можно регулировать интенсивность реакции в различных частях активной зоны.

Для длительной работы на большой мощности ядерные реакторы должны обладать некоторым запасом реактивности, определяющим допустимую степень отклонения от критичности (в ту или другую сторону), при которой ректор способен устойчиво работать. Чем выше запас реактивности, тем устойчивее реактор к аварийным ситуациям и тем безопаснее. Изменение реактивности происходит в результате выгорания ядерного топлива, при изменении мощности реактора, температуры делящегося материала, замедлителя и отражателя. Запас реактивности ядерного реактора в процессе выгорания топлива снижается, поэтому для непрерывного поддержания цепной реакции из активной зоны по мере необходимости извлекают компенсирующие (поглощающие нейтроны) стержни.

Кроме компенсирующих в реакторе обычно устанавливают стержни еще двух типов: регулирующие, предназначенные для управления работой реактора, и стержни аварийной защиты.

Регулирование ядерного реактора - функция системы управления и защиты ядерного реактора, обеспечивающая поддержание или изменение скорости цепной ядерной реакции.

Регулирующие стержни - подвижный узел реактора, воздействующий на реактивность и используемый для регулирования ядерного реактора. Регулирующие стержни изготавливаются из материала - поглотителя нейтронов.

Стержни аварийной защиты при нормальной работе реактора находятся вне активной зоны во взведенном состоянии. При превышении допустимого значения хотя бы одного параметра (мощности, температуры, давления пара, скорости разгона; при выходе из строя твэла или при отключении электропитания от циркуляционных насосов) стержни аварийной защиты сбрасываются в активную зону, что приводит к немедленному прекращению цепной реакции. Конструкция и привод аварийных стержней обеспечивают быстрый ввод их в активную зону. Управление компенсирующими, регулирующими и аварийными стержнями автоматическое.

АЗ - аварийная защита. Функция системы управления и защиты, ядерного реактора по предотвращению развития на нем аварийной ситуации за счет аварийной остановки реактора.

БАЗ - быстродействующая аварийная защита. Аварийная остановка реактора - быстрое прекращение цепной ядерной реакции при возникновении аварийной ситуации. Осуществляется быстрым вводом в активную зону регулирующих стержней или жидкого поглотителя нейтронов.

В стержнях управления реактором используются сильные поглотители нейтронов (бор-10, кадмий, гадолиний).

Выгорающий поглотитель - поглотитель нейтронов, который расходуется в процессе эксплуатации реактора. Благодаря этому частично компенсируется потеря реактивности, вследствие выгорания ядерного топлива. Избыточная реактивность необходима для обеспечения требуемого выгорания топлива в активной зоне реактора. Это неподвижные поглотители, выгружаемые из активной зоны вместе с топливом в процессе перегрузки.

В начале кампании реактор имеет запас реактивности, который расходуется в процессе работы на выгорание, отравление, шлакование, «иодную яму» и температурные эффекты. Запас реактивности компенсируется системой регуляторов. Мощность реактора регулируют стержнями, выгорающими добавками и т.п. Регулирующие стержни подразделяют на стержни автоматического регулирования (компенсация небольших отклонений реактивности от заданной, т.е. точная регулировка мощности) и компенсирующие (освобождение реактивности большими порциями, т.е. грубая регулировка мощности). В течение кампании регулирующие стержни извлекают по специальной программе, которая предусматривает минимальное искажение поля тепловыделения.

Нормальный (номинальный) режим эксплуатации реактора поддерживается системой управления и защиты реактора, СУЗ.

Режим номинальный - режим работы ядерной энергетической установки, ЯЭУ, при котором она производит наибольшее количество энергии с обеспечением требуемых запасов прочности и работоспособности всех ее элементов, наиболее высокой экономичности ЯЭУ и безопасности ее эксплуатации. Неноминальными являются все остальные режимы работы ЯЭУ, как нормальной эксплуатации, так и аварийные.

СУЗ - система управления и защиты реактора. Система, обеспечивающая пуск и остановку, поддержание заданного уровня мощности, переход на другой уровень мощности и аварийную остановку реактора. Рабочий орган СУЗ - движущийся узел реактора, как правило, цилиндрический стержень, содержащий материал с большим сечением поглощения, перемещение которого влияет на баланс нейтронов в активной зоне. Часто поглощение нейтронов сопровождается выделением относительно большого количества энергии, поэтому предусматривается отвод тепла из каналов СУЗ.

Обычно система управления и защиты является избыточной, т.е. количество рабочих элементов в ней больше необходимого. Резервирование - использование большего, чем минимально необходимо, количества элементов или систем таким образом, что выход из строя любого из них не приводит к утрате требуемой функции всего целого.

Безопасность реактора обеспечивается защитными системами безопасности, но базовая концепция аварийного риска базируется все же на внутренней самозащищенности реактора (в частности, в реакторе ни при каких условиях не должна развиваться неконтролируемая цепная реакция).

Защитные системы безопасности - технические системы, предназначенные для предотвращения или ограничения повреждений ядерного топлива, оболочек твэлов, оборудования и трубопроводов, содержащих радиоактивные вещества.

Внутренняя самозащищенность реактора - свойства ядерного реактора, которые обеспечивают его самоглушение и охлаждение при любых аварийных ситуациях. Биологическая защита предохраняет личный состав, а также различные приборы, механизмы и материалы от вредного действия весьма интенсивного радиоактивного излучения реактора. Современные энергетические реакторы по уровню излучения эквивалентны десяткам тонн радия. Защита состоит из защитных герметических оболочек и делится на первичную и вторичную. Биологическая защита - радиационный барьер, создаваемый вокруг активной зоны реактора и системы его охлаждения, для предотвращения вредного воздействия нейтронного и гамма-излучения на персонал, население и окружающую среду.

Уровень радиации снаружи вторичной защиты особенно не ограничивает деятельность сотрудников, но доступ людей в помещения, расположенные в пределах вторичной защиты, строго регламентируется определенными правилами безопасности. Биологическая защита небольших реакторов (например, реакторов подводных лодок) обычно выполняется композитной, содержащей в себе тяжелые и легкие элементы, что повышает ее эффективность. Защита может состоять из слоев стали, свинца, пластмассы, бетона с примесью различных веществ (например, химических соединений бора) и т. д. При этом свинец и сталь используются в основном для защиты от гамма-излучения, а бетон, пластмассы и природная вода - для защиты от нейтронов. На атомной станции основным материалом биологической защиты является бетон. Для реакторов большой мощности толщина бетонного защитного экрана достигает нескольких метров.

 

Газоохлажаемые реакторы

Наибольшим коэффициентом полезного действия обладают реакторы с газовым теплоносителем. Они же считаются самыми безопасными.

В настоящее время Великобритания - единственная в мире страна до сих пор использующая энергетические реакторы с газовым охлаждением (из 27 эксплуатируемых в Великобритании реакторов на АЭС в 26 теплоносителем является углекислый газ и только в одном - вода). Реакторы подобного типа есть в Италии и Японии. В реакторе типа «МАГНОКС» топливом является природный металлический уран, помещённый в оболочку из магниевого сплава, замедлителем нейтронов является графит, а теплоносителем – углекислый газ. Продвинутый вариант магноксового реактора – более мощный AGR реактор работает на слегка обогащённом по урану-235 керамическом (оксидном) топливе, заключённом в стальную оболочку, замедлителем является графит, а теплоносителем – углекислый газ.

В качестве газовых теплоносителей и рабочих тел применяют водород, гелий, азот, воздух, углекислый газ, метан и некоторые другие газы. Основные преимущества газовых теплоносителей и рабочих тел по сравнению с жидкими веществами - более высокая термическая и радиационная стойкость, химическая (коррозионная) пассивность. Недостатки - низкие плотность, теплоемкость и теплопроводность и, следовательно, низкая интенсивность теплоотдачи; при применении газов в качестве теплоносителей необходимо высокое давление в контуре при разумных мощностях, затрачиваемых на их прокачку.

Типичным примером газового реактора является реактор с шаровой засыпкой. В реакторе с шаровой засыпкой активная зона имеет форму шара, в который засыпаны тепловыделяющие элементы, также шарообразные. (Рис.3) Каждый элемент представляет из себя графитовую сферу, в которую вкраплены частицы оксида урана. Через реактор прокачивается газ, например, СО2. Газ подается в активную зону под давлением и впоследствии поступает на теплообменник. Регулирование реактора осуществляется стержнями из поглотителя, вставляемыми в активную зону. Экстренное глушение реактора осуществляется путем выстреливания в активную зону клина из поглотителя. Реактор с шаровой засыпкой выгодно отличается тем, что в нем принципиально не может произойти взрыв гремучего газа, и в случае разгона реактора самым неприятным последствием будет лишь расплавление тепловыделяющих элементов и невозможность дальнейшей эксплуатации реактора. С другой стороны, в случае попадания воды в активную зону 13 (например, из второго контура в случае прорыва трубы в теплообменнике) разрушение реактора c выбросом радиоактивного газа-теплоносителя неизбежно.

Реакторы с шаровой засыпкой в незначительном количестве строились в Восточной Европе Америке и Китае. В 2005 Китай начал строительство первого в мире функционирующего в коммерческих целях модульного газоохлаждаемого ядерного реактора с шаровыми ТВЭЛами (pebble bed modular gas cooled reactor - PBMR). По сравнению с реакторами обычного типа, PBMR является более компактным, экономичным и безопасным. В нём вместо воды используется инертный газ (например, гелий или азот), что позволяет увеличить КПД реактора до 50%. ТВЭЛы представляют собой не стержни, а шары размером с яблоко, покрытые графитовой оболочкой. Малая активная зона реактора и то, что ядерное топливо «распределено» среди сотен тысяч шаров, сводит риск аварии на АЭС к нулю. Кроме того, в реакторе нового типа используется необогащенный уран, что делает PBMR более привлекательным с точки зрения нераспространения и долговременного хранения отработавшего топлива и радиоактивных отходов.

Рис.4 Схема газоохлаждаемого реактора с шаровыми ТВЭЛами

 

В последнее время существенное внимание уделяется развитию высокотемпературных газоохладаемых реакторов (ВТГР).

ВТГР - высокотемпературный газоохлаждаемый реактор, в котором в качестве топлива может использоваться уран или плутоний, а в качестве воспроизводящего материала - торий. Замедлитель нейтронов – графит, а теплоноситель и рабочее тело- газ. Газ позволяет достигать более высокие температуры теплоносителя на выходе из реактора, а, следовательно, наиболее высокий термический КПД установки.

В 1970-1990-е годы в СССР был разработан ряд проектов ВТГР различного назначения и уровня мощности: опытно-промышленный реактор ВГ-400 для комбинированной выработки технологического тепла и электроэнергии в паротурбинном цикле, реакторная установка ВГ- 400ГТ с прямым газотурбинным циклом преобразования энергии, модульный реактор ВГМ для производства технологического тепла с температурой ~ 900°С и электроэнергии, атомная станция ВГМ-П для энергоснабжения типового нефтеперерабатывающего комбината.

Одним из реакторов нового поколения, удовлетворяющих требованиям развивающейся широкомасштабной атомной энергетики, является модульный высокотемпературный гелиевый реактор с газовой турбиной (ГТ-МГР), конструкция которого в настоящее время разрабатывается в рамках международного сотрудничества. 2.2 Реактор на промежуточных нейтронах В реакторах на промежуточных нейтронах, в которых большинство актов деления вызывается нейтронами с энергией, выше тепловой (от 1 эВ до 100 кэВ), масса замедлителя меньше, чем в тепловых реакторах. Особенность работы такого реактора состоит в том, что сечение деления топлива с ростом энергии нейтронов в промежуточной области уменьшается 14 слабее, чем сечение поглощения конструкционных материалов и продуктов деления. Таким образом, растет вероятность актов деления по сравнению с актами поглощения. Требования к нейтронным характеристикам конструкционных материалов менее жесткие, их диапазон шире. Следовательно, активная зона реактора на промежуточных нейтронах может быть изготовлена из более прочных материалов, что дает возможность повысить удельный теплосъем с поверхности нагрева реактора. Обогащение топлива делящимся изотопом в промежуточных реакторах вследствие уменьшения сечения должно быть выше, чем в тепловых. Воспроизводство ядерного топлива в реакторах на промежуточных нейтронах больше, чем в реакторе на тепловых нейтронах. В качестве теплоносителей в промежуточных реакторах используется вещество, слабо замедляющие нейтроны. Например, жидкие металлы. Замедлителем служит графит, бериллий и т.д. В реакторах на промежуточных нейтронах в активной зоне замедлителя очень мало, и концентрация ядерного топлива 235U в ней от 100 до 1000 кг/м3 .

 

Реактор на быстрых нейтронах

В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным 235U топливом. Активная зона окружается зоной воспроизводства, состоящей из твэлов, содержащих топливное сырье (обедненный 228U или 232Th). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны. Основное назначение реактора на быстрых нейтронах – производство оружейного плутония (и некоторых других делящихся актинидов), компонентов атомного оружия. Но подобные реакторы находят применение и в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 239Pu из 238U с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Реактор-размножитель, ядерный реактор, в котором «сжигание» ядерного топлива сопровождается расширенным воспроизводством вторичного топлива. В реакторе-размножителе, нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 235U), взаимодействуют с ядрами помещенного в реактор сырьевого материала (например, 238U), в результате образуется вторичное ядерное топливо (239Pu). В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 235U, воспроизводится 233U), в реакторе типа реактор – конвертер – изотопы разных химических элементов (например, сжигается 235U, воспроизводится 239Pu).

В быстрых реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа U 235 92 . Такой реактор обеспечивает расширенное воспроизводство ядерного горючего (в нем наряду с исчезновением атомов, способных к делению, происходит регенерация некоторых из них (например, образование 239Pu)). Основное число делений вызывается быстрыми нейтронами, причем каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 238U превращает их (посредством двух последовательных β– -распадов) в ядра 239Pu, т.е. нового ядерного топлива. Это значит, что, например, на 100 разделившихся ядер горючего (235U) в реакторах на быстрых нейтронах образуется 150 ядер 239Pu, способных к делению. (Коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг 235U получается до 1,5 кг Pu). 239Pu можно использовать в реакторе как делящийся элемент.

С точки зрения развития мировой энергетики, преимущество реактора на быстрых нейтронах (БН) состоит в том, что он позволяет использовать как топливо изотопы тяжелых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл могут 15 быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U - основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U. Отметим, что в обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Полагают, что долгосрочное развитие атомной энергетики большого масштаба будет осуществляться за счет быстрых реакторов с коэффициентом воспроизводства равным или большим единицы. При этом стратегической целью является овладение на основе ядерного бридинга неисчерпаемыми ресурсами дешёвого топлива — урана и, возможно, тория. Тактическая цель - использование тепловых реакторов на 235U (освоенных для производства оружейного плутония) для накопления энергетического плутония для быстрых реакторов. Быстрые реакторы будут работать на плутонии из оружейных запасов и из тепловых реакторов. Они практически не имеют ограничений по топливным ресурсам.

 

Рис.5 Блок-схема реактора на быстрых нейтронах

 

В дальнейшем энергетику планируется перевести на уран-ториевый цикл с производством недостающего 233U в ториевых бланкетах быстрых реакторов. При накоплении в них 233U с концентрацией в тории, необходимой для тепловых реакторов изготовление торий-уранового топлива не потребует извлечения чистого 233U. По своим физическим и техническим принципам быстрые реакторы с жидкометаллическим охлаждением имеют наибольший потенциал внутренне присущей безопасности, а, следовательно, и экономичности.

БН- ядерный реактор, на быстрых нейтронах. Корпусной реактор-размножитель. Теплоносителем первого и второго контуров обычно является натрий. Теплоноситель третьего контура - вода и пар. В быстрых реакторах замедлитель отсутствует.

К достоинствам быстрых реакторов можно отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам – дороговизну, из-за невозможности использования простейшего теплоносителя – воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива. Высокообогащенный уран - уран с содержанием изотопа урана-235 по массе равным или более 20 %.

Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. В качестве теплоносителя можно использовать и пары воды. Обычно используются жидкие металлы, например, расплав натрия (температура плавления натрия 98 °C). К недостаткам натрия следует отнести его высокую химическую активность по отношению к воде, воздуху и пожароопасность. Температура теплоносителя на входе в реактор - 370 оС, а на выходе - 550, что в десять раз выше аналогичных показателей, скажем, для ВВЭР - там температура воды на входе - 270 градусов, а на выходе - 293.

Жидкий металл - металл, находящийся в жидком состоянии при определенной температуре. Используется как теплоноситель первого контура ЯЭУ с реакторами на быстрых нейтронах, и как рабочее тело ЯЭУ, выполненной по схеме с бинарным циклом. Преимущества жидких металлов по сравнению с водой составляют высокая температура кипения, низкое давление насыщенных паров, высокая радиационная и термическая стойкость, высокая теплопроводность, обеспечивающая интенсивную теплоотдачу. К недостаткам следует отнести невысокую теплоемкость (кроме лития) и высокую для щелочных металлов химическую активность по отношению к воде и воздуху. Наиболее широкое распространение в качестве теплоносителя ЯЭУ получил натрий. Его основные преимущества по сравнению с другими жидкими металлами: высокие теплопередающие свойства, умеренные затраты мощности на его перекачку, малое коррозионное воздействие на конструкционные материалы.

В связи с большим тепловыделением и чтобы исключить контакт радиоактивного натрия с водой при возможных нарушениях нормального режима теплообмена, технологическую схему такого реактора выбирают трехконтурной: в первом и втором контурах в качестве теплоносителя используется натрий, в третьем - вода и пар). Объем теплоносителя на каждом последующем, естественно, больше. Натрий первого контура охлаждается в промежуточных теплообменниках натрием второго контура. В промежуточном контуре с натриевым теплоносителем создается более высокое давление, чем в первом, чтобы предотвратить протечку радиоактивного теплоносителя из первого контура через возможные дефекты в теплообменнике. В парогенераторах второго контура натрий передает тепло воде третьего контура, в результате чего вырабатывается пар с температурой около 550о при давлении 14 МПа. Такие параметры пара позволяют использовать стандартные турбины, применяемые в обычной энергетике. Пар высокого давления направляется в турбину, соединенную с электрогенератором. Из турбины пар поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя и парогенератора работают по замкнутым циклам.

Использование в качестве теплоносителя натрия заставляет учитывать следующие проблемы:

- чистота натрия используемого в БН. Иногда требуется 99,95 %, т.е. не более 5*10-4 примесей. Больше проблем вызывает примеси кислорода из-за участия кислорода в массопереносе железа и коррозии компонентов;

- натрий является очень активным химическим элементом. Он горит в воздухе и в атмосфере других окисляющих агентах. Горящий натрий образует дым, который может вызвать повреждение оборудования и приборов. Проблема усложняется в случае, если дым натрия радиоактивен. Горячий натрий в контакте с бетоном может реагировать с компонентами бетона и выделять водород, который в свою очередь взрывоопасен. Для устранения опасности, натрий и продукты его сгорания следует тщательно контролировать;

- возможность реакций натрия с водой и органическими материалами. Особенно это важно для конструкции парогенератора: утечка из водяного контура в натриевый, приводит к быстрому росту давления.

Паразитный захват быстрых нейтронов ядрами конструкционных материалов и продуктов деления крайне незначительный, поэтому для быстрых реакторов существует широкий выбор конструкционных материалов и продуктов деления крайне незначительный, поэтому для быстрых реакторов существует широкий выбор конструкционных материалов, позволяющих повысить надежность активной зоны. Следовательно, в них можно достичь высокой степени выгорания делящихся веществ.

При работе реактора БН происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана-238, расположенного вокруг активной зоны. Поэтому активные зоны реакторов на быстрых нейтронах существенно отличаются от активных зон реакторов на тепловых нейтронах. Экономически необходимая средняя глубина выгорания уран-плутонивого топлива в быстром реакторе должна составлять 100-150 МВт*сут/кг, т.е. она должна быть в 2,5 - 3 раза выше, чем в реакторах на тепловых нейтронах, что обусловлено высокой стоимостью топлива БН. Для достижения указанной глубины выгорания требуется высокая радиационная стойкость ТВЭЛ и тепловыделяющих сборок БН, необходимая стабильность геометрических параметров, сохранение герметичности и пластичности оболочек ТВЭЛ, их совместимость с продуктами деления и устойчивость к коррозионному воздействию теплоносителя и т.п.

Важную роль играет механическое расширение ТВЭЛ, т.к. при увеличении уровня мощности реактора, происходит тепловое расширение топливных сборок. Это увеличивает размеры активной зоны, тем самым уменьшается ее реактивность. Не менее важным параметром является радиоактивность первого контура. Радиоактивные изотопы 24, 22Nа (азот) являются продуктами активации, возникающими вследствие нейтронного облучения натрия первого контура (периоды полураспада изотопов 24,22Nа составляют соответственно 15 ч и 2,6 года). Поэтому радиоактивность натрия первого контура остается высокой в течение значительного времени после остановки реактора. Только из-за 24Nа требуется более четырех суток после остановки реактора, прежде чем персонал сможет приблизиться к натриевому теплоносителю.

Единственным в мире быстрым ядерным реактором, работающим на АЭС является реактор БН-600, входящий в состав Белоярской АЭС. Реакторы имеют различную мощность, стационарный или импульсный режим работы. Наибольшее распространение получили водо-водяные исследовательские реакторы на обогащенном уране. Тепловая мощность исследовательских реакторов колеблется в широком диапазоне и достигает нескольких тысяч киловатт. Многоцелевыми называются ректоры, служащие для нескольких целей, например для выработки энергии и получения ядерного топлива.

 

Тема 3. Реактивность и управление

Цель лекции: Знакомство с понятиями реактивность и управление

Вопросы к теме

1. Реактивность

2. Системы безопасности.

3. Пути повышения эксплуатационных характеристик тепловых реакторов.

 

Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой.

Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k, определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k > 1 (надкритический реактор) интенсивность процесса нарастает, а при k < 1 (подкритический реактор) спадает. (Величина ρ = 1 – (1/k) называется реактивностью). Благодаря явлению запаздывающих нейтронов время «рождения» нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов – управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении.

Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране- 238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется то, что из-за уменьшения плотности воды увеличивается утечка нейтронов из реактора. Еще один способ стабилизации реактора основан на нагревании «резонансного поглотителя нейтронов», такого, как уран-238, который тогда сильнее поглощает нейтроны.

Системы безопасности. Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического 18 процесса или действие системы управления и защиты, либо то и другое. При проектировании водо-водяных реакторов предусматриваются аварийные ситуации, связанные с поступлением холодной воды в реактор, падением расхода теплоносителя и слишком большой реактивностью при пуске. Поскольку интенсивность реакции возрастает с понижением температуры, при резком поступлении в реактор холодной воды повышаются реактивность и мощность. В системе защиты обычно предусматривается автоматическая блокировка, предотвращающая поступление холодной воды. При снижении расхода теплоносителя реактор перегревается, даже если его мощность не увеличивается. В таких случаях необходим автоматический останов. Кроме того, насосы теплоносителя должны быть рассчитаны на подачу охлаждающего теплоносителя, необходимую для остановки реактора. Аварийная ситуация может возникнуть при пуске реактора со слишком высокой реактивностью. Из-за низкого уровня мощности реактор не успевает нагреться настолько, чтобы сработала защита по температуре, пока не оказывается слишком поздно. Единственная надежная мера в таких случаях – осторожный пуск реактора.

Избежать перечисленных аварийных ситуаций довольно просто, если руководствоваться следующим правилом: все действия, способные увеличить реактивность системы, должны выполняться осторожно и медленно. Самое важное в вопросе о безопасности реактора – это абсолютная необходимость длительного охлаждения активной зоны реактора после прекращения в нем реакции деления. Дело в том, что радиоактивные продукты деления, остающиеся в топливных кассетах, выделяют тепло. Оно гораздо меньше тепла, выделяющегося в режиме полной мощности, но его достаточно, чтобы в отсутствие необходимого охлаждения расплавить твэлы. Кратковременное прекращение подачи охлаждающей воды привело к значительному повреждению активной зоны и аварии реактора в Три-Майл-Айленде (США). Разрушение активной зоны реактора – это минимальный ущерб в случае подобной аварии. Хуже, если произойдет утечка опасных радиоактивных изотопов. Большинство промышленных реакторов снабжено герметическими страховочными корпусами, которые должны в случае аварии предотвратить выброс изотопов в окружающую среду.

 

Пути повышения эксплуатационных характеристик тепловых реакторов

В ходе эксплуатации, ТВЭЛы и конструкции реактора испытывают большие переменные тепловые, радиационные и механические нагрузки. Поэтому ТВЭЛы иногда повреждаются, в результате чего некоторые радионуклиды выходят из реактора и попадают в окружающее пространство, что может привести к аварийной ситуации. Предпринимаемые в последние годы усилия энергетических фирм по увеличению величины коэффициента использования установленной мощности (КИУМ) и улучшения экономики топливного цикла путём выбора более агрессивных проектов активных зон и стратегий эксплуатации (таких как, более длительный цикл между перегрузками топлива, более высокие выгорание и загрузка активной зоны с низкой утечкой нейтронов) лишь усугубило проблему длительной эксплуатации функциональных и конструкционных материалов, поскольку резко возросла на них нагрузка внешних воздействий. Поэтому были предприняты попытки улучшения характеристик топлива, замедлителя, теплоносителя и других компонентов реактора. Например, стали более тщательно контролировать химию теплоносителя и уменьшили количество мелкого металлического мусора в теплоносителе.

Возможны, два направления в оптимизации показателей использования топлива:

- совершенствование топливных циклов с применением отработанных ТВС и обоснованных характеристик их работоспособности и

- поиск резервов, выявление излишних запасов в конструкционном оформлении топлива и внесение изменений в геометрию решетки и состав используемых материалов.

Целью использования ядерного топлива является получение тепловой энергии. Экономичность работы реакторов достигается при достаточно высоких тепловых нагрузках топлива. При этом, однако, должны надежно обеспечиваться определенные запасы до некоторых 19 предельных величин с тем, чтобы работа реактора была стабильной и безопасной, особенно в случаях отказа оборудования, т.е. в режимах с нарушением нормальных условий эксплуатации и при постулируемых проектных авариях. Определенный компромисс между стремлением к повышению отводимой тепловой энергии и обеспечением соответствующих запасов достигается в проекте ТВЭЛ, ТВС и реакторной установки.

Количественной характеристикой, выражающей топливную энергию, отведенную от единицы массы выгружаемого топлива, является, как известно, средняя глубина выгорания - [МВт*сут/кг]. Исходя из размерности данной характеристики, видно, что стремление к увеличению отводимой тепловой энергии может реализовываться либо повышением удельной весовой мощности [МВт/кг], либо продлением пребывания топлива в активной зоне при сохранении номинальной мощности реактора [суток/кг], т.е. без ее изменения. Можно попытаться увеличить оба параметра.

В настоящее время поставщики топлива идут по пути увеличения глубины выгорания топлива при заданном неизменном исходном обогащении. Цель достигается в одних случаях путем повышения водо-уранового отношения топливной решетки и увеличения загрузки двуокиси урана в твэл; в других - еще большим повышением водо-уранового отношения решетки, в том числе за счет уменьшения загрузки топлива в ТВС. В первом случае количество воды увеличивается за счет уменьшенной толщины оболочки ТВЭЛ, в основном, уменьшением ее наружного диаметра, во втором - дополнительный эффект получается из-за уменьшения числа ТВЭЛ в ТВС и загрузки топлива. В обоих случаях уменьшается поверхность охлаждения ТВЭЛ и увеличиваются поверхностные удельные нагрузки. Во втором случае возрастают и линейные нагрузки. Кроме того, для увеличения загрузки топлива в ТВЭЛ исключаются отверстия в таблетках. В результате этого возрастают средняя температура топлива и количество аккумулированного тепла в двуокиси урана.

Тенденции последних лет направлены на увеличение глубины выгорания и продолжительности цикла облучения между перегрузками. Движущей силой явилась высокая стоимость останова на перегрузку топлива, необходимость достижения высокого КИУМ и ограничения количества выгружаемого топлива. Сейчас 18-мес цикл является обычным для реакторов PWR и BWR; 24-мес цикл внедрен лишь на некоторых реакторах. На экспериментальных ТВС показана возможность достижения поставленной цели – средней глубины выгорания >62 МВт.сут/кг U. Однако существует один важный предел, влияющий на выгорание и продолжительность цикла: максимальный уровень обогащения топлива (5% 235U).

В последнее время удалось повысить надёжность топлива и снизить уровень повреждаемости топлива. Тем не менее, повреждения топлива случаются. Некоторые из этих повреждений оказались своего рода сюрпризами, т. е. новыми и непредвиденными, как, например, аномальное осевое смещение твэла твэла в реакторах PWR, повреждения топлива в первом цикле облучения (в корпусных водо-водяных энергетических реакторах, PWR и в ядерных реакторах кипящего типа, BWR), неполное вхождение регулирующих стержней в реакторах PWR и деградация поврежденного топлива в реакторах BWR. В Табл. 1 приведены основные причины повреждаемости топлива реакторов PWR и BWR.

 

Табл.1 Потенциальный комплекс проблем, относящийся к топливу

 

Реакторы PWR Реакторы BWR
Аномальное осевое смещение твэла Тяжелая вторичная деградация
Повреждения топлива, вызванные: Повреждения топлива, вызванные:
локальной коррозией из-за осаждения отложений (CILC-коррозия) CILC- коррозией
фреттинг-коррозией между твэлом и решеткой взаимодействием между топливом и оболочкой в твэлах с защитным покрытием
Эксплуатационные пределы для топлива, работающего в жестких условиях Эксплуатационные пределы для топлива, работающего в жестких условиях
Способность новых конструкций топлива/ материалов достигать проектной глубины выгорания Влияние изменения химического состава теплоносителя
Соответствие требованиям регулирующих органов (инциденты RIA, LOCA) Соответствие требованиям регулирующих органов
Повышение глубины выгорания до >62 МВт.сут/кгU Повышение глубины выгорания до >62 МВт.сут/кгU
Неполное вхождение регулирующих стержней Целостность регулирующих стержней и каналов

 

Реакторы PWR Реакторы BWR Аномальное осевое смещение твэла Тяжелая вторичная деградация Повреждения топлива, вызванные: Повреждения топлива, вызванные: локальной коррозией из-за осаждения отложений (CILC-коррозия) CILC- коррозией 20 фреттинг-коррозией между твэлом и решеткой взаимодействием между топливом и оболочкой в твэлах с защитным покрытием Эксплуатационные пределы для топлива, работающего в жестких условиях Эксплуатационные пределы для топлива, работающего в жестких условиях Способность новых конструкций топлива/ материалов достигать проектной глубины выгорания Влияние изменения химического состава теплоносителя Соответствие требованиям регулирующих органов (инциденты RIA, LOCA) Соответствие требованиям регулирующих органов Повышение глубины выгорания до >62 МВт.сут/кгU Повышение глубины выгорания до >62 МВт.сут/кгU Неполное вхождение регулирующих стержней Целостность регулирующих стержней и каналов

До 1998 основной причиной повреждаемости ТВЭЛов реакторов PWR была фреттинг- коррозия (т.е. коррозия при трении деталей). Проблема включает взаимодействие между ТВС различных конструкций и потоком теплоносителя в активной зоне. Потом были изменены конструкции и материал ТВС, а также химический состав теплоносителя. Было предложено вводить в теплоноситель химические добавки для того, чтобы защитить нетопливные компоненты активной зоны и/или чтобы уменьшить дозовые нагрузки на персонал. АЭС с реакторами BWR стали эксплуатироваться при повышенном содержании водорода и с добавками цинка и/или благородных металлов. В реакторах PWR при повышении начального обогащения топлива требуется более высокая концентрация бора в воде, которая должна быть сбалансирована более высоким содержанием лития для регулирования рН.

Повреждения топлива, вызванные осаждением отложений (crud), наблюдались как в реакторах PWR, так и в BWR. Из-за плотных отложений повышается температура на поверхности раздела оксид-металл, что приводит к ускоренной коррозии оболочки ТВЭЛа со стороны теплоносителя. При этом происходит аномальное осевое смещение ТВЭЛа, которое вызвано захватом бора в слой отложения, осажденного на высокотемпературной части ТВЭЛов. За последнее десятилетие был отмечен ряд повреждений ТВЭЛов реакторов BWR, которые приводили к значительному выходу газообразных продуктов деления. Некоторые АЭС пришлось останавливать. Выход радионуклидов из поврежденных ТВЭЛов происходит из-за образования длинных щелей в оболочке. Деградация связана со вторичным наводороживанием оболочки, а конструкция ТВЭЛа с тонким защитным циркониевым покрытием уязвима из-за быстрой коррозии и образования водорода. Здесь важным параметром является скорость образования водорода в результате коррозии циркониевого слоя. Поэтому для уменьшения скорости коррозии в паре был изменён состав материала покрытия.

Внедрение в реакторы BWR топлива с циркониевым слоем на внутренней стороне оболочки решило проблему повреждения ТВЭЛов при внезапных всплесках мощности. Механизм повреждения известен как взаимодействие топлива с оболочкой (Pellet-Cladding Interaction – PCI- эффект), связанное с поверхностными дефектами таблетки. Топливо с таблетками из UO2 c добавкой 0,25% алюмосиликата устойчиво к разрушению под действием PCI-эффекта в жестких условиях работы с циклированием мощности при умеренных уровнях выгорания.

Современная промышленность мобилизовала ресурсы для создания очень надежного топлива, которое экономически выгодно и не преподносит «сюрпризов».

 

 

Тема 4. Функциональные материалы ядерного реактора

Цель лекции: Ознакомление сфункциональными материалами ядерного реактора

Вопросы к теме

1.Ядерное горючее

2 Топливо для реакторов на тепловых нейтронах

3. Топливо для ВВЭР

4. Топливо для РБМК

5. Топливо для реакторов на быстрых нейтронах

6. Топливо для гомогенных реакторов

7. Замедлители нейтронов

8. Поглотители нейтронов

9. Теплоносители

10. Материалы – отражатели нейтронов

 

Ядерное горючее – вещество, в котором протекают ядерные реакции деления с выделением полезной энергии. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости. К делящимся веществам относятся изотопы 233U, 235U, 239Pu, 241Pu, способные делиться при взаимодействии с нейтронами любых энергий (беспороговое деление) и, следовательно, способные поддерживать цепную реакцию деления, а также 232Th и 238U, которые делятся под действием быстрых нейтронов (пороговое деление). К сырьевым элементам относится уран-238 (наработка плутония-239) и торий-232 (наработка урана-233). 235U, 238U и 232Th относятся к природным, 233U, 239Pu, 241Pu – к искусственным изотопам. Единственный природный изотоп, делящийся под действием нейтронов любых энергий, - 235U - называется первичным ядерным горючим, остальные 5 изотопов – вторичным. При реакции деления ядер урана выделяется 180 МэВ на один акт деления, что соответствует 7.4*1010 дж на 1 г горючего. Промышленные запасы первичного ядерного горючего –235U - в рудах оцениваются в 15 тыс. т., запасы природного вторичного ядерного горючего – 238U и 232Th – 2.5 млн. т.

Природный уран состоит из смеси трех изотопов - урана-238 (99,28%), урана-235 (0,7%) и урана-234 (0,006%). Самоподдерживающаяся реакция деления происходит только на уране-235. Основные параметры делящихся изотопов представлены в Табл.1. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления. Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.

Для сравнения укажем, что сечение захвата тепловых нейтронов для природной смеси изотопов урана равно 7,68 барн/атом, а для 238U – 2,74 барн/атом.

Данные Табл.1 показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтронов (с энергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.

 

Табл.1 Характеристики делящихся изотопов

Дадим некоторые определения.

Диоксид урана - химически и термически устойчивое (температура плавления 2760°С) соединение урана с кислородом (U02), что обусловило его выбор в качестве ядерного топлива легководных реакторов.

Карбиды урана - соединения урана с углеродом. Обладают электропроводностью, высокой твердостью, термической и химической стабильностью.

Карбиды урана обогащенные ураном-235, используются в качестве ядерного топлива.

Керамическое топливо - ядерное топливо, состоящее из тугоплавких соединений, например, оксидов, карбидов, нитридов.

Смешанное оксидное топливо - ядерное топливо, состоящее из смеси диоксидов урана и плутония.

Специальный ядерный материал - плутоний-239, уран-233, уран, обогащенный изотопами уран-235, любой материал, содержащий вышеуказанные изотопы или любой другой материал, способный выделять существенное количество ядерной энергии, который иногда может определяться как специальный ядерный материал.

Содержание изотопа - относительное количество атомов данного изотопа в смеси изотопов элемента, выраженное в виде доли от всех атомов элемента.

Исходный материал - материал, содержащий уран или торий с содержанием изотопов в том отношении, в каком они находятся в природном уране и тории; уран, обедненный изотопом урана-235, любое из вышеуказанных веществ в любой физической или химической форме.

Кермет (керамикометаллический материал) – гетерогенная композиция из металлов и неметаллов (например, оксидов), сочетающие тугоплавкость, твёрдость и жаростойкость керамики с проводимостью, пластичностью, термостойкостью







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.