Здавалка
Главная | Обратная связь

Накопители на магнитных дисках



Магнитные диски в качестве запоминающей среды используют магнитные материалы со специальными свойствами, позволяющими фиксировать два состояния. Информация на магнитные диски записывается и считывается магнитной головкой, которая перемещается радиально с фиксированным шагом, а сам диск при этом вращается вокруг своей оси. Головка считывает или записывает информацию, расположенную на концентрической окружности, которая называется дорожкой или треком. Количество дорожек на диске определяется шагом перемещения головки и зависит от технических характеристик привода диска и качества самого диска. За один оборот диска может быть считана информация с одной дорожки. Каждая дорожка дополнительно разбивается на ряд участков — секторов. Сектор содержит минимальный блок информации, который может быть записан или считан с диска. Чтение и запись на диск осуществляется блоками, поэтому дисководы называют блочными устройствами.

 

Физическая структура диска определяется количеством дорожек и числом секторов на каждой дорожке.

Логическая структура определяется файловой системой, которая реализована на диске и зависит от операционной системы компьютера, на котором используется данный диск.

 

Дисководы магнитных дисков делятся на дисководы для сменных носителей (дискет) и дисководы жестких дисков (винчестеры), которые устанавливаются в системном блоке компьютера.

 

Накопители на Оптических дисках

Оптический компакт-диск ( Compact Disk ( CD )), который был предложен в 1982 г. фирмами Philips и Sony первоначально для записи звуковой информации, произвел переворот и в компьютерной технике, так как идеально подходил для записи цифровой информации больших объемов на сменном носителе. Объем информации, записанной на компакт-диске, составляет 600—700 Мбайт. К достоинствам компакт-диска можно отнести и его относительную дешевизну в массовом производстве, высокую надежность и долговечность, нечувствительность к загрязнению и воздействию магнитных полей.

 

В середине 90-х гг. появились устройства, устанавливаемые непосредственно на компьютере и позволяющие производить однократную запись информации на компакт-диск. Для таких устройств выпускают специальные компакт-диски, которые получили название CD - Recodable ( CD - R ).

Позднее появились компакт-диски с возможностью перезаписи — CD - ReWritable ( CD - RW ).

Дальнейшее развитие технологий производства компакт-дисков привело к созданию дисков с высокой плотностью записи — цифровой универсальный диск Digital Versatile Disk ( DVD ). Дальнейшее увеличение объема информации обеспечивается применением двусторонних DVD .

 

Флэш-память

К недостаткам дисковой памяти можно отнести наличие механических движущихся компонентов, имеющих малую надежность, и большую потребляемую мощность при записи и считывании. Появление большого числа цифровых устройств, таких как МРЗ-плееры, цифровые фото- и видеокамеры, карманные компьютеры, потребовало разработки миниатюрных устройств внешней памяти, которые обладали бы малой энергоемкостью, небольшими размерами, значительной емкостью и обеспечивали бы совместимость с персональными компьютерами. Первые промышленные образцы такой памяти появились в 1994 г.

 

Новый тип памяти получил название флэш-память ( Flash - memory ). Флэш-память представляет собой микросхему перепрограммируемого постоянного запоминающего устройства (ППЗУ) с неограниченным числом циклов перезаписи

Конструктивно флэш-память выполняется в виде отдельного блока, содержащего микросхему флэш-памяти и контроллер, для подключения к одному из стандартных входов компьютера.

18. Внешние устройства. Видеотерминалы. Клавиатура. Манипулятор типа «мышь». Джойстик.

Видеотерминалы

Видеотерминалы предназначены для оперативного отображения текстовой и графической информации в целях визуального восприятия ее пользователем. Видеотерминал состоит из видеомонитора (дисплея) и видеоконтроллера.

Основными характеристиками мониторов являются следующие. Размер экрана монитора, который задается обычно величиной его диагонали в дюймах, разрешающая способность, которая определяется числом пикселей (световых точек) по горизонтали и вертикали.

Рабочая частота кадровой развертки определяет скорость смены кадров изображения, она влияет на утомляемость глаз при продолжительной работе на компьютере. Чем выше частота кадровой развертки, тем меньше утомляемость глаз.

На разрешающую способность монитора и качество изображения влияет объем видеопамяти.

 

Мониторы на основе ЭЛТ используют электроннолучевые трубки, применяемые в обычных телевизионных приемниках, и устройства, формирующего на экране точки (пиксели). Луч, двигающийся горизонтально, периодически засвечивает люминофор экрана, который под действием потока электронов начинает светиться, образуя точку. Для цветных мониторов засветка каждой точки осуществляется тремя лучами, вызывающими свечение люминофора соответствующего цвета — красного, зеленого и синего. Цвет точки создается смешением этих трех основных цветов и зависит от интенсивности каждого электронного луча. Цветной монитор может отображать до 16 млн оттенков в каждой точке.

 

Мониторы на жидкокристаллических индикаторах представляют собой плоские панели. Эти мониторы используют специальную прозрачную жидкость, которая при определенных напряженностях электростатического поля кристаллизуется, при этом изменяется ее прозрачность и коэффициент преломления световых лучей. Эти эффекты используются для формирования изображения. Конструктивно такой монитор выполнен в виде двух электропроводящих стеклянных пластан, между которыми помещен слой кристаллизующейся жидкости. Для создания электростатического поля стеклянная пластина покрыта матрицей прозрачных проводников, а пиксель формируется на пересечении вертикального и горизонтального проводника. Иногда на пересечении проводников ставят активный управляющий элемент — транзистор. Такие экраны имеют лучшую яркость и предоставляют возможность смотреть на экран даже с отклонением до 45° от вертикали.

 

В плазменных мониторах изображение формируется светом, выделяемым при газовом разряде в каждом пикселе экрана. Конструктивно плазменная панель состоит из трех стеклянных пластин, на две из которых нанесены тонкие прозрачные проводники: на одну вертикально, на другую — горизонтально. Между ними находится третья пластина, в которой в местах пересечения проводников двух первых пластин имеются сквозные отверстия. Эти отверстия при сборке

заполняются инертным газом: неоном или аргоном, они и образуют пиксели. Плазма газового разряда, возникающая при подаче высокочастотного напряжения на вертикальный и горизонтальный проводники, излучает свет в ультрафиолетовом диапазоне, который вызывает свечение люминофора. Каждый пиксель представляет собой миниатюрную лампу дневного света. Высокая яркость и контрастность, отсутствие дрожания изображения, а также большой угол отклонения от нормали, при котором изображение сохраняет высокое качество, являются большими преимуществами таких мониторов. К недостаткам можно отнести недостаточную пока разрешающую

способность и достаточно быстрое ухудшение качества люминофора. Пока такие мониторы используются только для конференций и презентаций.

 

Электролюминесцентные мониторы состоят из двух пластин, с ортогонально нанесенными на них прозрачными проводниками. На одну из пластин нанесен слой люминофора, который начинает светиться при подаче напряжения на проводники в точке их пересечения, образуя пиксель.

 

Самоизлучающиемониторы используют матрицу пикселей, построенную на основе полупроводникового материала, излучающего свет при подаче на него напряжения (светодиод). На сегодняшний день имеются монохромные самоизлучающие дисплеи с желтым свечением, но они уступают по сроку службы LCD мониторам. Удалось создать органический проводник, имеющий широкий спектр излучения. На основе этого материала планируется создать полноразмерный цветной самоизлучающий монитор. Достоинства таких мониторов заключаются в том, что они обеспечивают 180-градусный обзор, работают при низком напряжении питания и имеют малый вес.

 

Клавиатура

Клавиатурой называется устройство для ручного ввода информации в компьютер. Современные типы клавиатур различаются, в основном, принципом формирования сигнала при нажатии клавиши. Наиболее распространенные клавиатуры имеют под каждой клавишей купол, выполненный из специальной резины, который прогибается при нажатии клавиши и замыкает контакты проводящим слоем, расположенным на куполе. У некоторых клавиатур под каждой клавишей находится магнит, который при нажатии перемещается и проходит через катушку, наводя в ней ток самоиндукции.

 

Среди современных типов клавиатур можно отметить беспроводную клавиатуру, в которой передача информации в компьютер происходит с помощью датчика инфракрасного излучения, аналогично пультам управления различной бытовой техники. Такая клавиатура позволяет работать в любом удобном для пользователя месте помещения, не привязываясь к расположению системного блока. Можно также отметить гибкую резиновую клавиатуру, которая работает бесшумно, защищена от механических и химических разрушающих воздействий, очень тонкая и может быть свернута в виде цилиндра.

 

Клавиатурный процессор, который обрабатывает сигналы от клавиатуры, определяет номер клавиши, которая была нажата, так называемый скан-код, а сервисные программы операционной системы уже определяют, какой именно символ или команда были введены.

Такой подход позволяет сопоставлять каждой клавише больше одного символа. Так, например, алфавитные клавиши клавиатуры ассоциируются с четырьмя различными символами: строчными и прописными символами латинского и национального алфавита. Точно так же происходит и с управляющими клавишами. При нажатии клавиши клавиатурный процессор посылает в специальный буфер клавиатуры, расположенный в оперативной памяти, скан-код клавиши, состоящий из двух байт: байта собственно скан-кода и байта, определяющего какие дополнительные управляющие клавиши при этом удерживались нажатыми. К управляющим клавишам относятся клавиши Ctrl , Alt , Shift , которые еще и различаются по месту расположения: левые и правые, а также их комбинации. Сервисная программа читает из буфера клавиатуры эти два байта и передает их в программу, которая решает, какой именно символ или управляющий

сигнал необходимо отобразить. Такой подход к обработке нажатий клавиш значительно расширяет возможности клавиатуры при задании управляющих комбинаций клавиш или при смене национального алфавита. Специальная программа в операционной системе Windows , например, позволяет изменить целиком раскладку клавиш или национальный алфавит, или значения отдельных клавиш.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.