Здавалка
Главная | Обратная связь

Обработка результатов прямого измерения



Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Пусть в результате n измерений физической величины x получен ряд значений

. (2)

Этот ряд значений величины x называется выборкой. Имея такую выборку, можно оценить результаты измерений. Величина, которая будет являться такой оценкой, обозначим . Но так как это значение оценки результатов измерений не представляет собой истинного значения измеряемой величины, необходимо оценить его ошибку. Если есть возможность определить оценку ошибки Δx, то результат измерений можно записать в виде

. (3)

Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат записали в виде

при , .

Это означает, что из 100 шансов – 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм.

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

, (4)

где Δx – отклонение от величины истинного значения, σ – истинная среднеквадратичная ошибка, – дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при , кроме того, она является четной.

На рис. 1 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Δx и двумя ординатами из точек и (заштрихованная площадь на рис. 1) численно равна вероятности, с которой любой отсчет попадет в интервал .

Рис.1. График функции (4)

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

, (5)

где n – число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при .

Средней квадратичной ошибкой отдельного результата измерения называется величина

. (6)

Она характеризует ошибку каждого отдельного измерения. При S стремится к постоянному пределу .

С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина

. (7)

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде:

, (8)

где – абсолютная случайная ошибка для данной доверительной вероятности.

Эта методика расчета ошибок дает хорошие результаты только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом Стьюдента .

Опуская теоретические обоснования его введения, найдено

, (9)

где коэффициент Стьюдента можно взять из таблицы 29 (см. приложение 1).

При , т.е. интервал, в котором с заданной вероятностью находится истинное значение μ, стремится к нулю с увеличением числа измерений. Казалось бы, увеличивая n, можно получить результат с любой степенью точности. Однако точность существенно увеличивается лишь до тех пор, пока случайная ошибка не станет сравнимой с систематической. Дальнейшее увеличение числа измерений нецелесообразно, т.к. конечная точность результата будет зависеть только от систематической ошибки. Зная величину систематической ошибки, нетрудно задаться допустимой величиной случайной ошибки, взяв ее, например, равной 10% от систематической. Задавая для выбранного таким образом доверительного интервала определенное значение P (например, ) нетрудно нейти необходимое число измерений, гарантирующее малое влияние случайной ошибки на точность результата.

При обработке результатов прямых измерений предлагается следующий порядок операций:

1. Результат каждого измерения записать в таблицу.

2. Вычислить среднее значение из n измерений по формуле (5).

3. Найти погрешность отдельного измерения .

4. Вычислить квадраты погрешностей отдельных измерений .

5. Определить среднеквадратичную ошибку среднего арифметического .

6. Задать значение надежности.

7. Определить коэффициент Стьюдента для заданной надежности P и числа произведенных измерений n.

8. Найти доверительный интервал (погрешность измерения) по формуле (9).

9. Если измерения произведены прибором с систематической погрешностью δx, то в качестве границы доверительного интервала необходимо взять .

10. Оценить относительную погрешность результата измерений .

11. Окончательный результат записать в виде (8).

Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна dd = 0.005 мм). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности , а в четвертую – их квадраты (таблица 1).

 

Таблица 1. Результаты эксперимента

n
4.02 0.01 0.0001
3.98 – 0.03 0.0009
3.97 – 0.04 0.0016
4.01 0.00 0.0000
4.05 0.04 0.0016
4.03 0.02 0.0004
Σ 24.06 0.0046

,

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для шести измерений находим . Абсолютная ошибка по формуле (10) равна

.

Тогда абсолютная ошибка измеряемой величины равна

.

Относительная погрешность

.

Окончательный результат запишем в виде

при , .







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.