Показатель асимметрии
,
- центральный момент третьего порядка
Средняя квадратическая ошибка:
, n – число наблюдений
Если
, асимметрия существенна и распределение признака в генеральной совокупности не является симметричным. Если
, асимметрия несущественна, ее наличие объясняется влиянием случайных обстоятельств.
- правосторонняя асимметрия,
- левосторонняя асимметрия.
Показатель эксцесса (островершинности)
,
- центральный момент четвертого порядка
>0 – высоковершинное,
< 0 – низковершинное (
= -2 – предел)
Средняя квадратическая ошибка:
n – число наблюдений
Кривые распределения
Кривая линия, которая отражает закономерность изменения частот в чистом, исключающем влияние случайных факторов виде, называется кривой распределения.
Плотность распределения (расчет теоретических частот)
,
- нормированное отклонение
,
- определяется по таблице (приложение 1)
Критерий согласия К. Пирсона (для проверки близости теоретического и эмпирического распределений, для проверки соответствия эмпирического распределения закону нормального распределения)
f – эмпирические частоты в интервале, f’ – теоретические частоты в интервале
Критерий согласия Романовского
, m – число групп, m-3 – число степеней свободы при исчислении частот нормального распределения
Если к<3, то можно принять гипотезу о нормальном характере эмпирического распределения
Критерий Колмогорова
, D – максимальное значение разности между накопленными эмпирическими и теоретическими частотами, n – сумма эмпирических частот
Распределение Пуассона (теоретические частоты)
, n – общее число независимых испытаний, λ – среднее число появления редкого события в n одинаковых независимых испытаниях, m – частота данного события, е=2,71828
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.